|
|
Time-dependent density functional theory for quantum transport |
Yanho Kwok,Yu Zhang,GuanHua Chen( ) |
Department of Chemistry, The University of Hong Kong, Hong Kong, China |
|
|
Abstract The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reducedsingle electron density matrix based hierarchical equation of motion, which can be derived from Liouville–von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.
|
Keywords
tim-dependent density functional theory (TDDFT)
quantum transport
nonequilibrium Green’s function
|
Corresponding Author(s):
GuanHua Chen
|
Issue Date: 24 December 2014
|
|
1 |
M. Auf der Maur, M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi, and A. Di Carlo, TiberCAD: Towards multiscale simulation of optoelectronic devices, Opt. Quantum Electron., 2008, 40(14-15): 1077
https://doi.org/10.1007/s11082-009-9272-7
|
2 |
M. C. Petty, Molecular Electronics: From Principles to Practice, Wiley, 2008: 544
|
3 |
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277
https://doi.org/10.1016/0009-2614(74)85031-1
|
4 |
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252
https://doi.org/10.1126/science.278.5336.252
|
5 |
H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039
https://doi.org/10.1038/nature08639
|
6 |
H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater., 2011, 23(14): 1583
https://doi.org/10.1002/adma.201004291
|
7 |
S. W. Wu, N. Ogawa, and W. Ho, Atomic-scale coupling of photons to single-molecule junctions, Science, 2006, 312(5778): 1362
https://doi.org/10.1126/science.1124881
|
8 |
M. Galperin, and A. Nitzan, Molecular optoelectronics: the interaction of molecular conduction junctions with light, Phys. Chem. Chem. Phys., 2012, 14(26): 9421
https://doi.org/10.1039/c2cp40636e
|
9 |
A. Nitzan and M. A. Ratner, Electron transport in molecular wire junctions, Science, 2003, 300(5624): 1384
https://doi.org/10.1126/science.1081572
|
10 |
M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic transport through molecules: Comparing first-principles calculations to experiments, Nano Lett., 2006, 6(2): 258
https://doi.org/10.1021/nl052224r
|
11 |
M. Galperin, M. A Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter, 2007, 19(10): 103201
https://doi.org/10.1088/0953-8984/19/10/103201
|
12 |
J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, Vol. 1, World Scientific Series in Nanotechnology and Nanoscience, 2010: 703
https://doi.org/10.1142/7434
|
13 |
T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Electrical pulse measurement, inelastic relaxation, and non-equilibrium transport in a quantum dot, J. Phys.: Condens. Matter, 2003, 15: R1395
https://doi.org/10.1088/0953-8984/15/33/201
|
14 |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
|
15 |
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
https://doi.org/10.1103/PhysRevB.65.165401
|
16 |
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Self-consistentcharge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 1998, 58(11): 7260
https://doi.org/10.1103/PhysRevB.58.7260
|
17 |
T. A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Frauenheim, Tight-binding approach to time-dependent density-functional response theory, Phys. Rev. B, 2001, 63(8): 085108
https://doi.org/10.1103/PhysRevB.63.085108
|
18 |
C. Yam, L. Meng, G. H. Chen, Q. Chen, and N. Wong, Multiscale quantum mechanics/electromagnetics simulation for electronic devices, Phys. Chem. Chem. Phys., 2011, 13(32): 14365
https://doi.org/10.1039/c1cp20766k
|
19 |
L. Meng, C. Yam, S. Koo, Q. Chen, N. Wong, and G. H. Chen, Dynamic multiscale quantum mechanics/ electromagnetics simulation method, J. Chem. Theory Comput., 2012, 8(4): 1190
https://doi.org/10.1021/ct200859h
|
20 |
G. Stefanucci and C. O. Almbladh, Time-dependent quantum transport: An exact formulation based on TDDFT, Europhys. Lett., 2004, 67(1): 14
https://doi.org/10.1209/epl/i2004-10043-7
|
21 |
J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B, 2006, 74(8): 085324
https://doi.org/10.1103/PhysRevB.74.085324
|
22 |
S. Kurth, G. Stefanucci, C. O. Almbladh, A. Rubio, and E. K. U. Gross, Time-dependent quantum transport: A practical scheme using density functional theory, Phys. Rev. B, 2005, 72(3): 035308
https://doi.org/10.1103/PhysRevB.72.035308
|
23 |
J. Yuen-Zhou, D. G. Tempel, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Time-dependent density functional theory for open quantum systems with unitary propagation, Phys. Rev. Lett., 2010, 104(4): 043001
https://doi.org/10.1103/PhysRevLett.104.043001
|
24 |
X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Time-dependent density-functional theory for open systems, Phys. Rev. B, 2007, 75(19): 195127
https://doi.org/10.1103/PhysRevB.75.195127
|
25 |
X. Zheng, G. H. Chen, Y. Mo, S. Koo, H. Tian, C. Yam, and Y. Yan, Time-dependent density functional theory for quantum transport, J. Chem. Phys., 2010, 133(11): 114101
https://doi.org/10.1063/1.3475566
|
26 |
S. H. Ke, R. Liu, W. Yang, and H. U. Baranger, Timedependent transport through molecular junctions, J. Chem. Phys., 2010, 132(23): 234105
https://doi.org/10.1063/1.3435351
|
27 |
K. Burke, R. Car, and R. Gebauer, Density functional theory of the electrical conductivity of molecular devices, Phys. Rev. Lett., 2005, 94(14): 146803
https://doi.org/10.1103/PhysRevLett.94.146803
|
28 |
Y. Zhang, S. Chen, and G. H. Chen, First-principles timedependent quantum transport theory, Phys. Rev. B, 2013, 87(8): 085110
https://doi.org/10.1103/PhysRevB.87.085110
|
29 |
S. Chen, H. Xie, Y. Zhang, X. Cui, and G. H. Chen, Quantum transport through an array of quantum dots, Nanoscale, 2013, 5(1): 169
https://doi.org/10.1039/c2nr32343e
|
30 |
A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B, 1994, 50(8): 5528
https://doi.org/10.1103/PhysRevB.50.5528
|
31 |
C. Y. Yam, Y. Mo, F. Wang, X. B. Li, G. H. Chen, X. Zheng, Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit, Nanotechnology, 2008, 19(49): 495203
https://doi.org/10.1088/0957-4484/19/49/495203
|
32 |
K. F. Albrecht, H. Wang, L. Mühlbacher, M. Thoss, and A. Komnik, Bistability signatures in nonequilibrium charge transport through molecular quantum dots, Phys. Rev. B, 2012, 86(8): 081412
https://doi.org/10.1103/PhysRevB.86.081412
|
33 |
E. Khosravi, S. Kurth, G. Stefanucci, and E. Gross, The role of bound states in time-dependent quantum transport, Appl. Phys. A, 2008, 93(2): 355
https://doi.org/10.1007/s00339-008-4864-9
|
34 |
E. Khosravi, G. Stefanucci, S. Kurth, and E. K. Gross, Bound states in time-dependent quantum transport: Oscillations and memory effects in current and density, Phys. Chem. Chem. Phys., 2009, 11(22): 4535
https://doi.org/10.1039/b906528h
|
35 |
B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekath?fer, Time-dependent view of sequential transport through molecules with rapidly fluctuating bridges, Phys. Rev. Lett., 2012, 109(17): 176802
https://doi.org/10.1103/PhysRevLett.109.176802
|
36 |
J. K. Tomfohr and O. F. Sankey, Time-dependent simulation of conduction through a molecule, physica status solidi (b), 2001, 226(1): 115
|
37 |
N. Bushong, N. Sai, and M. Di Ventra, Approach to steadystate transport in nanoscale conductors, Nano Lett., 2005, 5(12): 2569
https://doi.org/10.1021/nl0520157
|
38 |
J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Complex absorbing potentials, Phys. Rep., 2004, 395(6): 357
https://doi.org/10.1016/j.physrep.2004.03.002
|
39 |
R. Baer, T. Seideman, S. Ilani, and D. Neuhauser, Ab initio study of the alternating current impedance of a molecular junction, J. Chem. Phys., 2004, 120(7): 3387
https://doi.org/10.1063/1.1640611
|
40 |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 1964, 136(3B): B864
https://doi.org/10.1103/PhysRev.136.B864
|
41 |
E. Runge and E. K. U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 1984, 52(12): 997
https://doi.org/10.1103/PhysRevLett.52.997
|
42 |
S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ostergaard Sorensen, Analyticity of the density of electronic wavefunctions, Arkiv f?r Matematik, 2004, 42(1): 87
https://doi.org/10.1007/BF02432911
|
43 |
S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ostergaard Sorensen, The electron density is smooth away from the nuclei, Commun. Math. Phys., 2002, 228(3): 401
https://doi.org/10.1007/s002200200668
|
44 |
X. Zheng, C. Yam, F. Wang, and G. H. Chen, Existence of time-dependent density-functional theory for open electronic systems: Time-dependent holographic electron density theorem, Phys. Chem. Chem. Phys., 2011, 13(32): 14358
https://doi.org/10.1039/c1cp20777f
|
45 |
G. Vignale and W. Kohn, Current-dependent exchangecorrelation potential for dynamical linear response theory, Phys. Rev. Lett., 1996, 77(10): 2037
https://doi.org/10.1103/PhysRevLett.77.2037
|
46 |
M. Di Ventra and R. D’Agosta, Stochastic time-dependent current-density-functional theory, Phys. Rev. Lett., 2007, 98(22): 226403
https://doi.org/10.1103/PhysRevLett.98.226403
|
47 |
R. D’Agosta and M. Di Ventra, Stochastic time-dependent current-density-functional theory: A functional theory of open quantum systems, Phys. Rev. B, 2008, 78(16): 165105
https://doi.org/10.1103/PhysRevB.78.165105
|
48 |
M. Galperin and S. Tretiak, Linear optical response of current-carrying molecular junction: a nonequilibrium Green’s function-time-dependent density functional theory approach, J. Chem. Phys., 2008, 128(12): 124705
https://doi.org/10.1063/1.2876011
|
49 |
Y. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B, 2010, 82(20): 205112
https://doi.org/10.1103/PhysRevB.82.205112
|
50 |
L. Zhang, Y. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B, 2012, 86(15): 155438
https://doi.org/10.1103/PhysRevB.86.155438
|
51 |
P. My?h?nen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff–Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107
https://doi.org/10.1103/PhysRevB.80.115107
|
52 |
R. Gebauer, K. Burke, and R. Car, in: Time-Dependent Density Functional Theory, Lecture Notes in Physics, Vol. 706, edited by M. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. U. Gross, Berlin Heidelberg: Springer, 2006: 463-477
https://doi.org/10.1007/3-540-35426-3_31
|
53 |
J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys., 2008, 128(23): 234703
https://doi.org/10.1063/1.2938087
|
54 |
H. Tian and G. H. Chen, An efficient solution of Liouvillevon Neumann equation that is applicable to zero and finite temperatures, J. Chem. Phys., 2012, 137(20): 204114
https://doi.org/10.1063/1.4767460
|
55 |
H. Xie, F. Jiang, H. Tian, X. Zheng, Y. Kwok, S. Chen, C. Yam, Y. Yan, and G. H. Chen, Time-dependent quantum transport: an efficient method based on Liouville–von-Neumann equation for single-electron density matrix, J. Chem. Phys., 2012, 137(4): 044113
https://doi.org/10.1063/1.4737864
|
56 |
J. Hu, R. X. Xu, and Y. Yan, Communication: Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys., 2010, 133(10): 101106
https://doi.org/10.1063/1.3484491
|
57 |
J. R. Soderstrom, D. H. Chow, and T. C. McGill, New negative differential resistance device based on resonant interband tunneling, Appl. Phys. Lett., 1989, 55(11): 1094
https://doi.org/10.1063/1.101715
|
58 |
M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851
https://doi.org/10.1088/0305-4608/15/4/009
|
59 |
F. Wang, C. Y. Yam, G. H. Chen, and K. Fan, Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain, J. Chem. Phys., 2007, 126(13): 134104
https://doi.org/10.1063/1.2715549
|
60 |
G. Stefanucci, S. Kurth, E. Gross, and A. Rubio, in: Molecular and Nano Electronics: Analysis, Design and Simulation, Theoretical and Computational Chemistry, Vol. 17, edited by J. Seminario, Els<?Pub Caret?>evier, 2007: 247-284
|
61 |
C. Yam, X. Zheng, G. Chen, Y. Wang, T. Frauenheim, and T. A. Niehaus, Time-dependent versus static quantum transport simulations beyond linear response, Phys. Rev. B, 2011, 83(24): 245448
https://doi.org/10.1103/PhysRevB.83.245448
|
62 |
N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems, Phys. Rev. Lett., 2005, 94(18): 186810
https://doi.org/10.1103/PhysRevLett.94.186810
|
63 |
F. Evers, F. Weigend, and M. Koentopp, Conductance of molecular wires and transport calculations based on densityfunctional theory, Phys. Rev. B, 2004, 69(23): 235411
https://doi.org/10.1103/PhysRevB.69.235411
|
64 |
G. Stefanucci and S. Kurth, Towards a description of the Kondo effect using time-dependent density-functional theory, Phys. Rev. Lett., 2011, 107(21): 216401
https://doi.org/10.1103/PhysRevLett.107.216401
|
65 |
E. Khosravi, A. M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Correlation effects in bistability at the nanoscale: Steady state and beyond, Phys. Rev. B, 2012, 85(7): 075103
https://doi.org/10.1103/PhysRevB.85.075103
|
66 |
S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory, Phys. Rev. Lett., 2010, 104(23): 236801
https://doi.org/10.1103/PhysRevLett.104.236801
|
67 |
P. My?h?nen, A. Stan, G. Stefanucci, and R. van Leeuwen, A many-body approach to quantum transport dynamics: Initial correlations and memory effects, Europhys. Lett., 2008, 84(6): 67001
https://doi.org/10.1209/0295-5075/84/67001
|
68 |
Y. Zhang, C. Y. Yam, and G. H. Chen, Dissipative timedependent quantum transport theory, J. Chem. Phys., 2013, 138(16): 164121
https://doi.org/10.1063/1.4802592
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|