Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (6) : 748-759    https://doi.org/10.1007/s11467-014-0424-2
REVIEW ARTICLE
Conductivity of carbon-based molecular junctions from ab-initio methods
Xiao-Fei Li1, Yi Luo2,3()
1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
2. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
3. KTH, Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry and Biology, S-106 91 Stockholm, Sweden
 Download: PDF(783 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon nanomaterials (CNMs) are prompting candidates for next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-initio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The functionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.

Keywords carbon nanotubes      graphene      all-carbon nanodevice      quantum transport      ab-initiomolecular dynamics simulations     
Corresponding Author(s): Yi Luo   
Issue Date: 24 December 2014
 Cite this article:   
Xiao-Fei Li,Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0424-2
https://academic.hep.com.cn/fop/EN/Y2014/V9/I6/748
1 The International Technology Roadmap for Semiconductors, 2011.
2 H. Choi and C. C. M. Mody, The long history of molecular electronics: Microelectronics origins of nanotechnology, Soc. Stud. Sci., 2009, 39(1): 11
https://doi.org/10.1177/0306312708097288
3 R. S. Mulliken, Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents, J. Am. Chem. Soc., 1950, 72(1): 600
https://doi.org/10.1021/ja01157a151
4 N. B. Zhitenev, A. Erbe, Z. Bao, W. Jiang, and E. Garfunkel, Molecular nano-junctions formed with different metallic electrodes, Nanotechnology, 2005, 16(4): 495
https://doi.org/10.1088/0957-4484/16/4/027
5 N. S. Hush, An overview of the first half-century of molecular electronics, Ann. N. Y. Acad. Sci., 2003, 1006(1): 1
https://doi.org/10.1196/annals.1292.016
6 T. Li, W. Hu, and D . Zhu, Nanogap electrodes, Adv. Mater., 2010, 22(2): 286
https://doi.org/10.1002/adma.200900864
7 J. J. Parks, A. R. Champagne, G. R. Hutchison, S. Flores-Torres, H. D. Abruña, and D. C. Ralph, Tuning the Kondo effect with a mechanically controllable break junction, Phys. Rev. Lett., 2007, 99: 026601
https://doi.org/10.1103/PhysRevLett.99.026601
8 B. Xu and N. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, 2003, 301(5637): 1221
https://doi.org/10.1126/science.1087481
9 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 1999, 286(5444): 1550
https://doi.org/10.1126/science.286.5444.1550
10 J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 2002, 417: 722
https://doi.org/10.1038/nature00791
11 C. Z. Li, A. Bogozi, W. Huang, and N. J. Tao, Fabrication of stable metallic nanowires with quantized conductance, Nanotechnology, 1999, 10(2): 221
https://doi.org/10.1088/0957-4484/10/2/320
12 J. O. Lee, G. Lientschnig, F. Wiertz, M. Struijk, R A J. Janssen, R. Egberink, D. N. Reinhoudt, P. Hadley, and C. Dekker, Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules, Nano Lett., 2003, 3(2): 113
https://doi.org/10.1021/nl025882+
13 S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjønholm, Singleelectron transistor of a single organic molecule with access to several redox states, Nature, 2003, 425: 698
https://doi.org/10.1038/nature02010
14 L. Qin, S. Park, L. Huang, and C. Mirkin, On-wire lithography, Science, 2005, 309(5731): 113
https://doi.org/10.1126/science.1112666
15 A. Hatzor and P. S. Weiss, Molecular rulers for scaling down nanostructures, Science, 2001, 291(5506): 1019
16 R. Krahne, A. Yacoby, H. Shtrikman, I. Bar-Joseph, T. Dadosh, and J. Sperling, Fabrication of nanoscale gaps in integrated circuits, Appl. Phys. Lett., 2002, 81(4): 730
https://doi.org/10.1063/1.1495080
17 A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277
https://doi.org/10.1016/0009-2614(74)85031-1
18 C. J. Cattena, R. A. Bustos-Marun, and H. M. Pastawski, Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study, Phys. Rev. B, 2010, 82(14): 144201
https://doi.org/10.1103/PhysRevB.82.144201
19 B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, Chiroptical molecular switches, Chem. Rev., 2000, 100(5): 1789
https://doi.org/10.1021/cr9900228
20 S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjønholm, Singleelectron transistor of a single organic molecule with access to several redox states, Nature, 2003, 425: 698
https://doi.org/10.1038/nature02010
21 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 1999, 286(5444): 1550
https://doi.org/10.1126/science.286.5444.1550
22 X. Guo, J. P. Small, J. E. Klare, Y. Wang, M. S. Purewal, I. W. Tam, B. H. Hong, R. Caldwell, L. Huang, S. O’Brien, J. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim, and C. Nuckolls, Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules, Science, 2006, 311(5759): 356
https://doi.org/10.1126/science.1120986
23 S. Chung, J. B. Parker, M. Bianchet, L. M. Amzel, and J. T. Stivers, Impact of linker strain and flexibility in the design of a fragment-based inhibitor, Nat. Chem. Biol., 2009, 5(6): 407
https://doi.org/10.1038/nchembio.163
24 R. McCreery and A. Bergren, Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication, Adv. Mater., 2009, 21(43): 4303
https://doi.org/10.1002/adma.200802850
25 G. J. Iafrate and M. A. Stroscio, Application of quantumbased devices: Trends and challenges, IEEE Trans. Electron. Dev., 1996, 43(10): 1621
https://doi.org/10.1109/16.536805
26 X. F. Li, H. Ren, L. L. Wang, K. Q. Cheng, J. Yang, and Y. Luo, Important structural factors controlling the conductance of DNA pairs in molecular junctions, J. Phys. Chem. C, 2010, 114(33): 14240
https://doi.org/10.1021/jp100798g
27 M. Q. Long, L. Wang, K. Q. Chen, X. F. Li, B. Zou, and Z. Shuai, Coupling effect on the electronic transport through dimolecular junctions, Phys. Lett. A, 2007, 365(5−6): 489
https://doi.org/10.1016/j.physleta.2007.02.027
28 J. Heath, Molecular electronics, Annu. Rev. Mater. Res., 2009, 39(1): 1
https://doi.org/10.1146/annurev-matsci-082908-145401
29 Y. B. Hu, Y. Zhu, H. J. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803
https://doi.org/10.1103/PhysRevLett.95.156803
30 Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305
https://doi.org/10.1038/ncomms1310
31 N. B. Zhitenev, W. Jiang, A. Erbe, Z. Bao, E. Garfunkel, D. M. Tennant, and R. A. Cirelli, Control of topography, stress and diffusion at molecule–metal interfaces, Nanotechnology, 2006, 17(5): 1272
https://doi.org/10.1088/0957-4484/17/5/019
32 J. M. Seminario, C. E. De La Cruz, and P. A. Derosa, A theoretical analysis of metal–molecule contacts, J. Am. Chem. Soc., 2001, 123(23): 5616
https://doi.org/10.1021/ja015661q
33 J. Kushmerick, D. Holt, J. Yang, J. Naciri, M. Moore, and R. Shashidhar, Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory, Phys. Rev. Lett., 2002, 89(8): 086802
https://doi.org/10.1103/PhysRevLett.89.086802
34 A. Bonifas, and R . McCreery, ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition, Nat. Nanotechnol., 2010, 5(8): 612
https://doi.org/10.1038/nnano.2010.115
35 C.-H. Ko, M.-J. Huang, M.-D. Fu, and C.-H. Chen, Superior contact for single-molecule conductance: Electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au, J. Am. Chem. Soc., 2009, 132: 756
https://doi.org/10.1021/ja9084012
36 A. K. Patra, S. Singh, B. Barin, Y. Lee, J.-H. Ahn, E. del Barco, E. R. Mucciolo, and B. Özyilmaz, Dynamic spin injection into chemical vapor deposited grapheme, Appl. Phys. Lett., 2012, 101(16): 162407
https://doi.org/10.1063/1.4761932
37 J. Beebe, B. Kim, C. Frisbie, and J. Kushmerick, Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy, ACS Nano, 2008, 2(5): 827
https://doi.org/10.1021/nn700424u
38 X. F. Li, Electron and Spin Transport in Graphene-Based Nanodevices, Ph.D. thesis, KTH, Theoretical Chemistry and Biology,2013
39 B. Li, X. Cao, H. G. Ong, J. W. Cheah, X. Zhou, Z. Yin, H. Li, J. Wang, F. Boey, W. Huang, and H. Zhang, Allcarbon electronic devices fabricated by directly grown singlewalled carbon nanotubes on reduced graphene oxide electrodes, Adv. Mater., 2010, 22(28): 3058
https://doi.org/10.1002/adma.201000736
40 P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol., 2007, 2(10): 605
https://doi.org/10.1038/nnano.2007.300
41 D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes, Nat. Commun., 2013, 4: 1374
https://doi.org/10.1038/ncomms2366
42 X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Design of graphene-nanoribbon heterojunctions from first principles, J. Phys. Chem. C, 2011, 115(25): 12616
https://doi.org/10.1021/jp202188t
43 P. Pomorski, C. Roland, and H. Guo, Quantum transport through short semiconducting nanotubes: A complex band structure analysis, Phys. Rev. B, 2004, 70(11): 115408
https://doi.org/10.1103/PhysRevB.70.115408
44 S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Carbon nanotube quantum resistors, Science, 1998, 280(5370): 1744
https://doi.org/10.1126/science.280.5370.1744
45 B. Wei, R. Spolenak, P. Kohler-Redlich, M. Ruhle, and E. Arzt, Electrical transport in pure and boron-doped carbon nanotubes, Appl. Phys. Lett., 1999, 74(21): 3149
https://doi.org/10.1063/1.124093
46 V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller, and R. B. Kaner, Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices, ACS Nano, 2012, 6(2): 1395
https://doi.org/10.1021/nn204200w
47 L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett., 1996, 76(6): 971
https://doi.org/10.1103/PhysRevLett.76.971
48 Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Carbon nanotube intramolecular junctions, Nature, 1999, 402(6759): 273
https://doi.org/10.1038/46241
49 W. Lu, G. Ruan, B. Genorio, Y. Zhu, B. Novosel, Z. Peng, and J. M. Tour, Functionalized graphene nanoribbons via anionic polymerization initiated by Alkali metal-intercalated carbon nanotubes, ACS Nano, 2013, 7(3): 2669
https://doi.org/10.1021/nn400054t
50 X. Guo, A. Gorodetsky, J. Hone, J. Barton, and C. Nuckolls, Conductivity of a single DNA duplex bridging a carbon nanotube gap, Nat. Nanotechnol., 2008, 3(3): 163
https://doi.org/10.1038/nnano.2008.4
51 X. H. Zhang, X. F. Li, L. L. Wang, L. Xu, and K. W. Luo, Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions, Appl. Phys. Lett., 2014, 104(10): 103107
https://doi.org/10.1063/1.4868410
52 T. Chen, X. F. Li, L. Wang, K. Luo, Q. Li, X. Zhang, and X. Shang, Perfect spin filter and strong current polarization in carbon atomic chain with asymmetrical connecting points, Europhys. Lett., 2014, 105(5): 57003
https://doi.org/10.1209/0295-5075/105/57003
53 A. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture), Angew. Chem. Int. Ed., 2001, 40(14): 2591
https://doi.org/10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0
54 Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, and L. Yu, Development of new semiconducting polymers for high performance solar cells, J. Am. Chem. Soc., 2009, 131(1): 56
https://doi.org/10.1021/ja808373p
55 C. Cattena, R. Bustos-Marún, and H. Pastawski, Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study, Phys. Rev. B, 2010, 82(14): 144201
https://doi.org/10.1103/PhysRevB.82.144201
56 S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56
https://doi.org/10.1038/354056a0
57 T. Ebbesen and P. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, 1992, 358(6383): 220
https://doi.org/10.1038/358220a0
58 G. Zhong, J. H. Warner, M. Fouquet, A. W. Robertson, B. Chen, and J. Robertson, Growth of ultrahigh density singlewalled carbon nanotube forests by improved catalyst design, ACS Nano, 2012, 6(4): 2893
https://doi.org/10.1021/nn203035x
59 X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett., 2009, 9(9): 3137
https://doi.org/10.1021/nl901260b
60 K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
61 A. Geim and K. Novoselov, The rise of graphene, Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
62 Z. Yao, C. L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett., 2000, 84(13): 2941
https://doi.org/10.1103/PhysRevLett.84.2941
63 S. Hong and S. Myung, Nanotube Electronics: A flexible approach to mobility, Nat. Nanotechnol., 2007, 2(4): 207
https://doi.org/10.1038/nnano.2007.89
64 J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys., 2007, 79(2): 677
https://doi.org/10.1103/RevModPhys.79.677
65 X. F. Li, K. Q. Chen, L. Wang, and Y. Luo, Effects of interface roughness on electronic transport properties of nanotube molecule nanotube junctions, J. Phys. Chem. C, 2010, 114(28): 12335
https://doi.org/10.1021/jp102945v
66 X. F. Li, L. Wang, K. Q. Chen, and Y. Luo, Nanomechanically induced molecular conductance switch, Appl. Phys. Lett., 2009, 95(23): 232118
https://doi.org/10.1063/1.3273867
67 C. Thiele, H. Vieker, A. Beyer, B. S. Flavel, F. Hennrich, D. Munoz Torres, T. R. Eaton, M. Mayor, M. M. Kappes, A. Golzhauser, H. Löhneysen, and R. Krupke, Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts, Appl. Phys. Lett., 2014, 104(10): 103102
https://doi.org/10.1063/1.4868097
68 B. J. Alder and T. E. Wainwright, Studies in molecular dynamics (I): General method, J. Chem. Phys., 1959, 31(2): 459
https://doi.org/10.1063/1.1730376
69 W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys., 2001, 73(1): 33
https://doi.org/10.1103/RevModPhys.73.33
70 A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, New York: MacMillan, 1982
71 W. R. French, C. R. Iacovella, and P. T. Cummings, Largescale atomistic simulations of environmental effects on the formation and properties of molecular junctions, ACS Nano, 2012, 6(3): 2779
https://doi.org/10.1021/nn300276m
72 R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Berlin: Springer, 1990
https://doi.org/10.1007/978-3-642-86105-5
73 W. Koch and M. C. Holthausen, A Chemistry’s Guide to Density Functional Theory, Verlag: Wiley-VCH, 2001
https://doi.org/10.1002/3527600043
74 H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semi-conductors, New York: Springer-Verlag, 1998
75 J. Taylor, H. Guo, and J . Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
76 M. Brandbyge, J. L. Mozos, P. Ordej’on, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
https://doi.org/10.1103/PhysRevB.65.165401
77 Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys., 2002, 281(2−3): 151
https://doi.org/10.1016/S0301-0104(02)00446-9
78 J. E. Subotnik, T. Hansen, M. A. Ratner, and A. Nitzan, Nonequilibrium steady state transport via the reduced density matrix operator, J. Chem. Phys., 2009, 130(14): 144105
https://doi.org/10.1063/1.3109898
79 S. Yeganeh, M. A. Ratner, M. Galperin, and A. Nitzan, Transport in state space: Voltage-dependent conductance calculations of benzene-1,4-dithiol, Nano Lett., 2009, 9(5): 1770
https://doi.org/10.1021/nl803635t
80 H. Pierson, Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, 1993
81 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, 1985, 318(6042): 162
https://doi.org/10.1038/318162a0
82 P. Collins and P. Avouris, Nanotubes for electronics, Sci. Am., 2000, 283(6): 62
https://doi.org/10.1038/scientificamerican1200-62
83 T. Guo, P. Nikolaev, A. Rinzler, D. Tomanek, D. Colbert, and R. Smalley, Self-assembly of tubular fullerenes, J. Phys. Chem., 1995, 99(27): 10694
https://doi.org/10.1021/j100027a002
84 T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett., 1995, 243(1−2): 49
https://doi.org/10.1016/0009-2614(95)00825-O
85 N. Inami, M. Ambri Mohamed, E. Shikoh, and A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method, Sci. Technol. Adv. Mater., 2007, 8(4): 292
https://doi.org/10.1016/j.stam.2007.02.009
86 N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii, and N. Minami, Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire, J. Am. Chem. Soc., 2008, 130(30): 9918
https://doi.org/10.1021/ja8024752
87 S. Sen and I. Puri, Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles, Nanotechnology, 2004, 15(3): 264
https://doi.org/10.1088/0957-4484/15/3/005
88 T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes, Nano Lett., 2009, 9(4): 1497
https://doi.org/10.1021/nl8034866
89 H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography, Nat. Commun., 2011, 2: 309
https://doi.org/10.1038/ncomms1313
90 X. Lu and Z. Chen, Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and singlewalled carbon nanotubes, Chem. Rev., 2005, 105(10): 3643
https://doi.org/10.1021/cr030093d
91 J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 2006, 312(5776): 1034
https://doi.org/10.1126/science.1126298
92 X. F. Li, K. Q. Chen, L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices, Appl. Phys. Lett., 2007, 91(13): 133511
https://doi.org/10.1063/1.2790839
93 X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Effect of intertube interaction on the transport properties of a carbon double-nanotube device, J. Appl. Phys., 2007, 101(6): 064514
https://doi.org/10.1063/1.2714780
94 N. R. Wilson and J. V. Macpherson, Carbon nanotube tips for atomic force microscopy, Nat. Nanotechnol., 2009, 4(8): 483
https://doi.org/10.1038/nnano.2009.154
95 J. Liu, J. K. Notbohm, R. W. Carpick, and K. T. Turner, Method for characterizing nanoscale wear of atomic force microscope tips, ACS Nano, 2010, 4(7): 3763
https://doi.org/10.1021/nn100246g
96 K. Meinander, T. N. Jensen, S. B. Simonsen, S. Helveg, and J. V. Lauritsen, Quantification of tip-broadening in noncontact atomic force microscopy with carbon nanotube tips, Nanotechnology, 2012, 23(40): 405705
https://doi.org/10.1088/0957-4484/23/40/405705
97 J. V. Macpherson, Scanning probe microscopy: Taking a closer look at conductivity, Nat. Nanotechnol., 2011, 6(2): 84
https://doi.org/10.1038/nnano.2011.8
98 Y. Lisunova, I. Levkivskyi, and P. Paruch, Ultrahigh currents in dielectric-coated carbon nanotube probes, Nano Lett., 2013, 13(9): 4527
https://doi.org/10.1021/nl4024808
99 C. Kranz, Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques, Analyst, 2013, 139(2): 336
https://doi.org/10.1039/c3an01651j
100 F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Low-power switching of phase-change materials with carbon nanotube electrodes, Science, 2011, 332(6029): 568
https://doi.org/10.1126/science.1201938
101 K. Gong, S. Chakrabarti, and L. Dai, Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? Angew. Chem. Int. Ed., 2008, 47(29): 5446
https://doi.org/10.1002/anie.200801744
102 M. Del Valle, R. Guti’errez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch, Nat. Nanotechnol., 2007, 2(3): 176
https://doi.org/10.1038/nnano.2007.38
103 G. Wang, Y. Kim, M. Choe, T. W. Kim, and T. Lee, A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., 2011, 23(6): 755
https://doi.org/10.1002/adma.201003178
104 K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, Big bandgap in highly reduced graphene oxides, J. Phys. Chem. C, 2013, 117: 6049
https://doi.org/10.1021/jp3118067
105 T. Chen, X. F. Li, L. L. Wang, Q. Li, K. W. Luo, X. H. Zhang, and L. Xu, Semiconductor to metal transition by tuning the location of N2AA in armchair graphene nanoribbons, J. Appl. Phys., 2014, 115(5): 053707
https://doi.org/10.1063/1.4863638
106 X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Tuning the electronic transport properties of zigzag graphene nanoribbons via hydrogenation separators, J. Phys. Chem. C, 2011, 115(49): 24366
https://doi.org/10.1021/jp208892h
107 X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions, J. Phys.: Condens. Matter, 2012, 24(9): 095801
https://doi.org/10.1088/0953-8984/24/9/095801
108 R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater., 2010, 9(4): 315
https://doi.org/10.1038/nmat2710
109 H. J. Xiang, E. J. Kan, S. H. Wei, X. G. Gong, and M. H. Whangbo, Thermodynamically stable single-side hydrogenated graphene, Phys. Rev. B, 2010, 82(16): 165425
https://doi.org/10.1103/PhysRevB.82.165425
110 H. L. Gao, L. Wang, J. J. Zhao, F. Ding, and J. P. Lu, Band gap tuning of hydrogenated graphene: H coverage and configuration dependence, J. Phys. Chem. C, 2011, 115(8): 3236
https://doi.org/10.1021/jp1094454
111 X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Strong current polarization and negative differential resistance in chiral graphene nanoribbons with reconstructed (2,1)-edges, Appl. Phys. Lett., 2012, 101(7): 073101
https://doi.org/10.1063/1.4745506
112 Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fan, Vacuumbreakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications, Nano Lett., 2007, 7(12): 3792
https://doi.org/10.1021/nl072298y
113 J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures, Phys. Rev. Lett., 2007, 98(18): 185501
https://doi.org/10.1103/PhysRevLett.98.185501
114 S. Barraza-Lopez, M. Vanevi’c, M. Kindermann, and M. Y. Chou, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 2010, 104(7): 076807
https://doi.org/10.1103/PhysRevLett.104.076807
115 R. Addou, A. Dahal, and M. Batzill, Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene, Nat. Nanotechnol., 2012, 8(1): 41
https://doi.org/10.1038/nnano.2012.217
116 F. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, The origins and limits of metal–grapheme junction resistance, Nat. Nanotechnol., 2011, 6: 179
https://doi.org/10.1038/nnano.2011.6
117 O. Yazyev and S. Louie, Electronic transport in polycrystalline graphene, Nat. Mater., 2010, 9(10): 806
https://doi.org/10.1038/nmat2830
118 J. Zhou, T. Hu, J. Dong, and Y. Kawazoe, Ferromagnetism in a graphene nanoribbon with grain boundary defects, Phys. Rev. B, 2012, 86(3): 035434
https://doi.org/10.1103/PhysRevB.86.035434
119 A. R. Botello-Méndez, E. Cruz-Silva, F. Lopez-Urias, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in Hybrid graphene nanoribbons using 57 defects, ACS Nano, 2009, 3(11): 3606
https://doi.org/10.1021/nn900614x
120 K. Y. Lian, X. F. Li, S. Duan, M. X. Jin, D. J. Ding, and Y. Luo, Tuning electronic and magnetic properties of armchair|zigzag hybrid graphene nanoribbons by the choice of supercell model of grain boundaries, J. Appl. Phys., 2014, 115(10): 104303
https://doi.org/10.1063/1.4868082
[1] Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems[J]. Front. Phys. , 2022, 17(6): 63503-.
[2] Hui Yang, Junjie Zeng, Sanyi You, Yulei Han, Zhenhua Qiao. Equipartition of current in metallic armchair nanoribbon of graphene-based device[J]. Front. Phys. , 2022, 17(6): 63508-.
[3] Bo Liu, Liyu Qian, Yanliang Zhao, Yiwen Zhang, Feng Liu, Yi Zhang, Yiqun Xie, Wangzhou Shi. A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects[J]. Front. Phys. , 2022, 17(5): 53501-.
[4] Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu. Ferroelectricity in hBN intercalated double-layer graphene[J]. Front. Phys. , 2022, 17(4): 43504-.
[5] Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li. Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene[J]. Front. Phys. , 2022, 17(4): 43503-.
[6] Zhen-Bing Dai, Gui Cen, Zhibin Zhang, Xinyu Lv, Kaihui Liu, Zhiqiang Li. Near-field infrared response of graphene on copper substrate[J]. Front. Phys. , 2022, 17(4): 43502-.
[7] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[8] Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction[J]. Front. Phys. , 2022, 17(2): 23501-.
[9] Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502-.
[10] Yueyue Tian, Houping Yang, Junjun Li, Shunbo Hu, Shixun Cao, Wei Ren, Yin Wang. A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes[J]. Front. Phys. , 2022, 17(1): 13501-.
[11] Sa Yang, Ren-Long Zhou, Yang-Jun Huang. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity[J]. Front. Phys. , 2021, 16(4): 43504-.
[12] Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors[J]. Front. Phys. , 2021, 16(4): 43502-.
[13] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[14] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[15] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed