|
|
Impurity effect as a probe for the pairing symmetry of graphene-based superconductors |
Yuan-Qiao Li1, Tao Zhou2,3,1( ) |
1. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China 3. Guangdong–Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We study theoretically the single impurity effect on graphene-based superconductors. Four different pairing symmetries are discussed. Sharp in-gap resonant peaks are found near the impurity site for the d+id pairing symmetry and the p+ip pairing symmetry when the chemical potential is large. As the chemical potential decreases, the in-gap states are robust for the d + id pairing symmetry while they disappear for the p + ip pairing symmetry. Such in-gap peaks are absent for the fully gapped extended s-wave pairing symmetry and the nodal f-wave pairing symmetry. The existence of the ingap resonant peaks can be explained well based on the sign-reversal of the superconducting gap along different Fermi pockets and by analyzing the denominator of the T-matrix. All of the features may be checked by the experiments, providing a useful probe for the pairing symmetry of graphene-based superconductors.
|
Keywords
impurity effect
graphene
superconductivity
|
Corresponding Author(s):
Tao Zhou
|
Issue Date: 15 April 2021
|
|
1 |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
|
2 |
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
https://doi.org/10.1007/s11467-018-0835-6
|
3 |
C. Tonnoir, A. Kimouche, J. Coraux, L. Magaud, B. Delsol, B. Gilles, and C. Chapelier, Induced superconductivity in graphene grown on rhenium, Phys. Rev. Lett. 111(24), 246805 (2013)
https://doi.org/10.1103/PhysRevLett.111.246805
|
4 |
S. Ichinokura, K. Sugawara, A. Takayama, T. Takahashi, and S. Hasegawa, Superconducting calcium-intercalated bilayer graphene, ACS Nano 10(2), 2761 (2016)
https://doi.org/10.1021/acsnano.5b07848
|
5 |
J. Chapman, Y. Su, C. A. Howard, Dmytro Kundys, A. N. Grigorenko, F. Guinea, A. K. Geim, I. V. Grigorieva, and R. R. Nair, Superconductivity in Ca-doped graphene laminates, Sci. Rep. 6(1), 23254 (2016)
https://doi.org/10.1038/srep23254
|
6 |
B. M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D. J. Dvorak, C. N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straßer, A. Stohr, S. Forti, C. R. Ast, U. Starke, and A. Damascelli, Evidence for superconductivity in Li-decorated monolayer graphene, Proc. Natl. Acad. Sci. USA 112(38), 11795 (2015)
https://doi.org/10.1073/pnas.1510435112
|
7 |
A. Di Bernardo, O. Millo, M. Barbone, H. Alpern, Y. Kalcheim, U. Sassi, A. K. Ott, D. De Fazio, D. Yoon, M. Amado, A. C. Ferrari, J. Linder, and J. W. A. Robinson, p-wave triggered superconductivity in singlelayer graphene on an electron-doped oxide superconductor, Nat. Commun. 8(1), 14024 (2017)
https://doi.org/10.1038/ncomms14817
|
8 |
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
https://doi.org/10.1038/nature26160
|
9 |
B. Uchoa and A. H. Castro Neto, Superconducting states of pure and doped graphene, Phys. Rev. Lett. 98(14), 146801 (2007)
https://doi.org/10.1103/PhysRevLett.98.146801
|
10 |
N. B. Kopnin and E. B. Sonin, BCS superconductivity of Dirac electrons in graphene layers, Phys. Rev. Lett. 100(24), 246808 (2008)
https://doi.org/10.1103/PhysRevLett.100.246808
|
11 |
J. Linder, A. M. Black-Schaffer, T. Yokoyama, S. Doniach, and A. Sudbø, Josephson current in graphene: Role of unconventional pairing symmetries, Phys. Rev. B 80(9), 094522 (2009)
https://doi.org/10.1103/PhysRevB.80.094522
|
12 |
A. M. Black-Schaffer and S. Doniach, Possibility of measuring intrinsic electronic correlations in graphene using a d-wave contact Josephson junction, Phys. Rev. B 81(1), 014517 (2010)
https://doi.org/10.1103/PhysRevB.81.014517
|
13 |
T. Ma, F. Yang, H. Yao, and H. Q. Lin, Possible triplet p+ ip superconductivity in graphene at low filling, Phys. Rev. B 90(24), 245114 (2014)
https://doi.org/10.1103/PhysRevB.90.245114
|
14 |
J. P. L. Faye, P. Sahebsara, and D. Senechal, Chiral triplet superconductivity on the graphene lattice, Phys. Rev. B 92(8), 085121 (2015)
https://doi.org/10.1103/PhysRevB.92.085121
|
15 |
T. Ma, Z. Huang, F. Hu, and H. Q. Lin, Pairing in graphene: A quantum Monte Carlo study, Phys. Rev. B 84(12), 121410 (2011)
https://doi.org/10.1103/PhysRevB.84.121410
|
16 |
R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped grapheme, Nat. Phys. 8(2), 158 (2012)
https://doi.org/10.1038/nphys2208
|
17 |
M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale, Competing many-body instabilities and unconventional superconductivity in grapheme, Phys. Rev. B 86(2), R020507 (2012)
https://doi.org/10.1103/PhysRevB.86.020507
|
18 |
R. Nandkishore, R. Thomale, and A. V. Chubukov, Superconductivity from weak repulsion in hexagonal lattice systems, Phys. Rev. B 89(14), 144501 (2014)
https://doi.org/10.1103/PhysRevB.89.144501
|
19 |
L. Y. Xiao, S. L. Yu, W. Wang, Z. J. Yao, and J. X. Li, Possible singlet and triplet superconductivity on honeycomb lattice, Europhys. Lett. 115(2), 27008 (2016)
https://doi.org/10.1209/0295-5075/115/27008
|
20 |
M. V. Hosseini and M. Zareyan, Model of an exotic chiral superconducting phase in a graphene bilayer, Phys. Rev. Lett. 108(14), 147001 (2012)
https://doi.org/10.1103/PhysRevLett.108.147001
|
21 |
J. L. Lado and J. Fernandez-Rossier, Unconventional Yu–Shiba–Rusinov states in hydrogenated grapheme, 2D Mater. 3(2), 025001 (2016)
https://doi.org/10.1088/2053-1583/3/2/025001
|
22 |
T. Huang, L. Zhang, and T. Ma, Antiferromagnetically ordered Mott insulator and d+ id superconductivity in twisted bilayer graphene: A quantum Monte Carlo study, Sci. Bull. (Beijing) 64(5), 310 (2019)
https://doi.org/10.1016/j.scib.2019.01.026
|
23 |
W. Chen, Y. Chu, T. Huang, and T. Ma, Metal-insulator transition and dominant d+ id pairing symmetry in twisted bilayer graphene, Phys. Rev. B 101(15), 155413 (2020)
https://doi.org/10.1103/PhysRevB.101.155413
|
24 |
C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys. 15(5), 53201 (2020)
https://doi.org/10.1007/s11467-020-0965-5
|
25 |
C. R. Hu, Midgap surface states as a novel signature for dxa2−xb2-wave superconductivity, Phys. Rev. Lett. 72(10), 1526 (1994)
https://doi.org/10.1103/PhysRevLett.72.1526
|
26 |
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
https://doi.org/10.1103/RevModPhys.78.373
|
27 |
D. G. Zhang, Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors, Phys. Rev. Lett. 103(18), 186402 (2009)
https://doi.org/10.1103/PhysRevLett.103.186402
|
28 |
W. F. Tsai, Y. Y. Zhang, C. Fang, and J. P. Hu, Impurityinduced bound states in iron-based superconductors with s-wave cos(kx) · cos(ky) pairing symmetry, Phys. Rev. B 80(6), 064513 (2009)
https://doi.org/10.1103/PhysRevB.80.064513
|
29 |
D. D. Wang, B. Liu, M. Liu, Y. F. Yang, and S. P. Feng, Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2, Front. Phys. 14(1), 13501 (2019)
https://doi.org/10.1007/s11467-018-0852-5
|
30 |
F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Pairing symmetry of superconducting graphene, Eur. Phys. J. B 76(3), 469 (2010)
https://doi.org/10.1140/epjb/e2010-00228-9
|
31 |
T. O. Wehling, H. P. Dahal, A. I. Lichtenstein, and A. V. Balatsky, Local impurity effects in superconducting graphene, Phys. Rev. B 78(3), 035414 (2008)
https://doi.org/10.1103/PhysRevB.78.035414
|
32 |
O. A. Awoga and A. M. Black-Schaffer, Probing unconventional superconductivity in proximitized graphene by impurity scattering, Phys. Rev. B 97(21), 214515 (2018)
https://doi.org/10.1103/PhysRevB.97.214515
|
33 |
E. W. Hudson, S. H. Pan, A. K. Gupta, K.-W. Ng, and J. C. Davis, Atomic-scale quasi-particle scattering resonances in Bi2Sr2CaCu2O8+δ, Science 285(5424), 88 (1999)
https://doi.org/10.1126/science.285.5424.88
|
34 |
D. K. Morr, Resonant impurity states in the d-densitywave phase, Phys. Rev. Lett. 89(10), 106401 (2002)
https://doi.org/10.1103/PhysRevLett.89.106401
|
35 |
N. Andrenacci, G. G. N. Angilella, H. Beck, and R. Pucci, Linear response theory around a localized impurity in the pseudogap regime of an anisotropic superconductor: Precursor pairing versus d-density-wave scenario, Phys. Rev. B 70(2), 024507 (2004)
https://doi.org/10.1103/PhysRevB.70.024507
|
36 |
M. M. Scherer, Graphene doping reaches new levels, Physics (College Park Md.) 13, 161 (2020)
https://doi.org/10.1103/Physics.13.161
|
37 |
P. Rosenzweig, H. Karakachian, D. Marchenko, K. Küster, and U. Starke, Overdoping graphene beyond the van hove singularity, Phys. Rev. Lett. 125(17), 176403 (2020)
https://doi.org/10.1103/PhysRevLett.125.176403
|
38 |
T. Löthman and A. M. Black-Schaffer, Defects in the d+ id-wave superconducting state in heavily doped graphene, Phys. Rev. B 90(22), 224504 (2014)
https://doi.org/10.1103/PhysRevB.90.224504
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|