Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (2) : 23501    https://doi.org/10.1007/s11467-018-0869-9
LETTER
Enhanced robustness of zero-line modes in graphene via magnetic field
Ke Wang1,2, Tao Hou1,2, Yafei Ren1,2, Zhenhua Qiao1,2()
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
2. CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(18492 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We systematically studied the influence of magnetic field on zero-line modes (ZLMs) in graphene and demonstrated the physical origin of their enhanced robustness by employing nonequilibrium Green’s functions and the Landauer–Büttiker formula. We found that a perpendicular magnetic field can separate the wavefunctions of the counter-propagating kink states into opposite directions. Specifically, the separation vanishes at the charge neutrality point and increases as the Fermi level deviates from the charge neutrality point and can reach a magnitude comparable to the wavefunction spread at a moderate field strength. Such spatial separation of oppositely propagating ZLMs effectively suppresses backscattering and is more significant under zigzag boundary condition than under armchair boundary condition. Moreover, the presence of magnetic field enlarges the bulk gap and suppresses the bound states, thereby further reducing the scattering. These mechanisms effectively increase the mean free paths of the ZLMs to approximately 1 μm in the presence of a disorder.

Keywords graphene      topological state      zero-line state      electronic transport     
Corresponding Author(s): Zhenhua Qiao   
Issue Date: 29 November 2018
 Cite this article:   
Ke Wang,Tao Hou,Yafei Ren, et al. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0869-9
https://academic.hep.com.cn/fop/EN/Y2019/V14/I2/23501
1 M. Bttiker, Edge-state physics without magnetic fields, Science 325(5938), 278 (2009)
https://doi.org/10.1126/science.1177157
2 G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls in gapped graphene, Phys. Rev. Lett. 101(8), 087204 (2008)
https://doi.org/10.1103/PhysRevLett.101.087204
3 I. Martin, M. Blanter, and A. F. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)
https://doi.org/10.1103/PhysRevLett.100.036804
4 W. Yao, S. A. Yang, and Q. Niu, Edge states in graphene: From gapped flat-band to gapless chiral modes, Phys. Rev. Lett. 102(9), 096801 (2009)
https://doi.org/10.1103/PhysRevLett.102.096801
5 M. Killi, S. Wu, and A. Paramekanti, Band structures of bilayer graphene superlattices, Phys. Rev. Lett. 107(8), 086801 (2011)
https://doi.org/10.1103/PhysRevLett.107.086801
6 Y. Ran, Y. Zhang, and A. Vishwanath, One-dimensional topologically protected modes in topological insulators with lattice dislocations, Nat. Phys. 5(4), 298 (2009)
7 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)
https://doi.org/10.1038/nature04235
8 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-temperature quantum Hall effect in graphene, Science 315(5817), 1379 (2007)
https://doi.org/10.1126/science.1137201
9 C. Z. Chang, J. S. Zhang, X. Feng, J. Shen, Z. C. Zhang, M. H. Guo, K. Li, Y. B. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. K. Ji, X. Chen, J. F. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
10 Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Phys. Rev. B 82(16), 161414R (2010)
https://doi.org/10.1103/PhysRevB.82.161414
11 L. Sheng, D. N. Sheng, and C. S. Ting, Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder, Phys. Rev. Lett. 94(1), 016602 (2005)
https://doi.org/10.1103/PhysRevLett.94.016602
12 Z. H. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
https://doi.org/10.1021/nl201941f
13 T. Hou, G. H. Chen, W. K. Tse, C. G. Zeng, and Z. H. Qiao, Topological zero-line modes in folded bilayer graphene, arXiv: 1809.04036 (2018)
14 K. Wang, Y. F. Ren, X. Z. Deng, S. A. Yang, J. Jung, and Z. H. Qiao, Gate-tunable current partition in graphenebased topological zero lines, Phys. Rev. B 95(24), 245420 (2017)
https://doi.org/10.1103/PhysRevB.95.245420
15 Z. H. Qiao, J. Jung, C. Lin, Y. F. Ren, A. H. MacDonald, and Q. Niu, Current partition at topological channel intersections, Phys. Rev. Lett. 112(20), 206601 (2014)
https://doi.org/10.1103/PhysRevLett.112.206601
16 J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. F. Ren, K. Watanabe, T. Taniguchi, Z. H. Qiao, and J. Zhu, Gate-controlled topological conducting channels in bilayer graphene, Nat. Nanotechnol. 11, 1060 (2016)
https://doi.org/10.1038/nnano.2016.158
17 M. Kim, J. H. Choi, S. H. Lee, K. Watanabe, T. Taniguchi, S. H. Jhi, and H. J. Lee, Valley-symmetrypreserved transport in ballistic graphene with gatedefined carrier guiding, Nat. Phys. 12(11), 1022 (2016)
18 L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, H. A. Velasco, M. C. Bechtel, A. Martin, J. Zettl, Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
https://doi.org/10.1038/nature14364
19 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997
20 M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F Met. Phys. 14(5), 1205 (1984)
https://doi.org/10.1088/0305-4608/14/5/016
[1] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[2] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[3] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[4] Yu-Lei Han, Zhen-Hua Qiao. Universal conductance fluctuations in Sierpinski carpets[J]. Front. Phys. , 2019, 14(6): 63603-.
[5] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[6] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[7] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[8] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[11] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[12] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[13] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[14] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[15] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed