|
|
Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction |
Jian-Lei Ge1,Tian-Ru Wu2,Ming Gao3,Zhan-Bin Bai1,Lu Cao1,Xue-Feng Wang3,Yu-Yuan Qin1( ),Feng-Qi Song1( ) |
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Nanjing University, Nanjing 210093, China 2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 3. School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was suppressed after the Bi-cluster deposition. Detailed WL data were obtained while the gate and temperature were changed. Using E. McCann’s formula, the spin-relaxation time was extracted, which was found to increase with the elastic scattering time. This is attributed to the Elliott–Yafet spin relaxation and Kane–Mele type spin–orbit coupling (SOC). The SOC strength was enhanced to 2.64 meV as a result of the first deposition. The coverage effect is discussed according to the measurement after the second deposition.
|
Keywords
graphene
cluster deposition
weak localization
spin–orbit coupling
|
Corresponding Author(s):
Yu-Yuan Qin,Feng-Qi Song
|
Issue Date: 13 April 2017
|
|
1 |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
|
2 |
J. Zhang, C. Triola, and E. Rossi, Proximity effect in=graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
https://doi.org/10.1103/PhysRevLett.112.096802
|
3 |
K. H. Jin and S. H. Jhi, Proximity-induced giant spin– orbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
https://doi.org/10.1103/PhysRevB.87.075442
|
4 |
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
https://doi.org/10.1103/PhysRevLett.112.116404
|
5 |
J. Zhou, Q. Liang, and J. Dong, Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene, Carbon 48(5), 1405 (2010)
https://doi.org/10.1016/j.carbon.2009.12.031
|
6 |
M. Gmitra, D. Kochan, and J. Fabian, Spin–orbit coupling in hydrogenated graphene, Phys. Rev. Lett. 110(24), 246602 (2013)
https://doi.org/10.1103/PhysRevLett.110.246602
|
7 |
A. Cresti, D. Van Tuan, D. Soriano, A. W. Cummings, and S. Roche, Multiple quantum phases in graphene with enhanced spin–orbit coupling: From the quantum spin Hall regime to the spin Hall effect and a robust metallic state, Phys. Rev. Lett. 113(24), 246603 (2014)
https://doi.org/10.1103/PhysRevLett.113.246603
|
8 |
C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Engineering a robust quantum spin Hall state in graphene via adatom deposition, Phys. Rev. X 1(2), 021001 (2011)
https://doi.org/10.1103/PhysRevX.1.021001
|
9 |
A. H. Castro Neto and F. Guinea, Impurity-induced spin–orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
https://doi.org/10.1103/PhysRevLett.103.026804
|
10 |
H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
https://doi.org/10.1103/PhysRevLett.109.116803
|
11 |
P. Lee, K. H. Jin, S. J. Sung, J. G. Kim, M. T. Ryu, H. M. Park, S. H. Jhi, N. Kim, Y. Kim, S. U. Yu, K. S. Kim, D. Y. Noh, and J. Chung, Proximity effect induced electronic properties of graphene on Bi2Te2Se, ACS Nano 9(11), 10861 (2015)
https://doi.org/10.1021/acsnano.5b03821
|
12 |
S. Rajput, Y. Y. Li, M. Weinert, and L. Li, Indirect interlayer bonding in graphene–topological insulator van der Waals heterostructure: Giant spin–orbit splitting of the graphene Dirac states, ACS Nano 10(9), 8450 (2016)
https://doi.org/10.1021/acsnano.6b03387
|
13 |
J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro Neto, and B. Ozyilmaz, Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene, Nat. Phys. 9(5), 284 (2013)
|
14 |
J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, S. J. Baeck, J. H. Ahn, A. Ferreira, M. A. Cazalilla, A. H. C. Neto, and B. Özyilmaz, Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun. 5, 4748 (2014)
https://doi.org/10.1038/ncomms5748
|
15 |
Y. Han, G. X. Ge, J. G. Wan, J. J. Zhao, F. Q. Song, and G. H. Wang, Predicted giant magnetic anisotropy energy of highly stable Ir dimer on single-vacancy graphene, Phys. Rev. B 87(15), 155408 (2013)
https://doi.org/10.1103/PhysRevB.87.155408
|
16 |
M. V. Ulybyshev and M. I. Katsnelson, Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study, Phys. Rev. Lett. 114(24), 246801 (2015)
https://doi.org/10.1103/PhysRevLett.114.246801
|
17 |
Y. C. Lin, P. Y. Teng, P. W. Chiu, and K. Suenaga, Exploring the single atom spin state by electron spectroscopy, Phys. Rev. Lett. 115(20), 206803 (2015)
https://doi.org/10.1103/PhysRevLett.115.206803
|
18 |
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of largearea graphene films for high-performance transparent conductive electrodes, Nano Lett. 9(12), 4359 (2009)
https://doi.org/10.1021/nl902623y
|
19 |
M. Han, C. Xu, D. Zhu, L. Yang, J. Zhang, Y. Chen, K. Ding, F. Song, and G. Wang, Controllable synthesis of two-dimensional metal nanoparticle arrays with oriented size and number density gradients, Adv. Mater. 19(19), 2979 (2007)
https://doi.org/10.1002/adma.200602947
|
20 |
F. Song, M. Han, M. Liu, B. Chen, J. Wan, and G. Wang, Experimental observation of nanojets formed by heating PbO-coated Pb clusters, Phys. Rev. Lett. 94(9), 093401 (2005)
https://doi.org/10.1103/PhysRevLett.94.093401
|
21 |
Y. W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Temperature dependent electron transport in graphene, Eur. Phys. J. Spec. Top. 148(1), 15 (2007)
https://doi.org/10.1140/epjst/e2007-00221-9
|
22 |
J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nat. Phys. 4(5), 377 (2008)
|
23 |
Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu, Transport study of graphene adsorbed with indium adatoms, Phys. Rev. B 91(8), 085411 (2015)
https://doi.org/10.1103/PhysRevB.91.085411
|
24 |
K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, Manipulation of spin transport in graphene by surface chemical doping, Phys. Rev. Lett. 104(18), 187201 (2010)
https://doi.org/10.1103/PhysRevLett.104.187201
|
25 |
X. Wang, X. Pan, M. Gao, J. Yu, J. Jiang, J. Zhang, H. Zuo, M. Zhang, Z. Wei, W. Niu, Z. Xia, X. Wan, Y. Chen, F. Song, Y. Xu, B. Wang, G. Wang, and R. Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in Zr-SiS, Adv. Electron. Mater 2 (10) (2016)
|
26 |
E. McCann and V. I. Fal’ko, z→−zsymmetry of spin– orbit coupling and weak localization in graphene, Phys. Rev. Lett. 108(16), 166606 (2012)
https://doi.org/10.1103/PhysRevLett.108.166606
|
27 |
E. McCann and V. I. Fal’ko, Weak localization and spin– orbit coupling in monolayer and bilayer graphene, in: H. Aoki and S. M. Dresselhaus (Eds.), Physics of Graphene, Springer International Publishing, 2014
https://doi.org/10.1007/978-3-319-02633-6_10
|
28 |
F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett. 103(22), 226801 (2009)
https://doi.org/10.1103/PhysRevLett.103.226801
|
29 |
K. I. Imura, Y. Kuramoto, and K. Nomura, Weak localization properties of the doped Z2 topological insulator, Phys. Rev. B 80(8), 085119 (2009)
https://doi.org/10.1103/PhysRevB.80.085119
|
30 |
K. I. Imura, Y. Kuramoto, and K. Nomura, Antilocalization of graphene under the substrate electric field, Europhys. Lett. 89(1), 17009 (2010)
https://doi.org/10.1209/0295-5075/89/17009
|
31 |
H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin–orbit interactions in graphene sheets, Phys. Rev. B 74(16), 165310 (2006)
https://doi.org/10.1103/PhysRevB.74.165310
|
32 |
M. Zarea and N. Sandler, Rashba spin–orbit interaction in graphene and zigzag nanoribbons, Phys. Rev. B 79(16), 165442 (2009)
https://doi.org/10.1103/PhysRevB.79.165442
|
33 |
P. Rakyta, A. Kormányos, and J. Cserti, Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin–orbit coupling, Phys. Rev. B 82(11), 113405 (2010)
https://doi.org/10.1103/PhysRevB.82.113405
|
34 |
D. Huertas-Hernando, F. Guinea, and A. Brataas, Spin–orbit-mediated spin relaxation in graphene, Phys. Rev. Lett. 103(14), 146801 (2009)
https://doi.org/10.1103/PhysRevLett.103.146801
|
35 |
E. V. Zhizhin, A. Varykhalov, A. G. Rybkin, A. A. Rybkina, D. A. Pudikov, D. Marchenko, J. Sánchez-Barriga, I. I. Klimovskikh, G. G. Vladimirov, O. Rader, and A. M. Shikin, Spin splitting of Dirac fermions in graphene on Ni intercalated with alloy of Bi and Au, Carbon 93, 984 (2015)
https://doi.org/10.1016/j.carbon.2015.05.104
|
36 |
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97(1), 016801 (2006)
https://doi.org/10.1103/PhysRevLett.97.016801
|
37 |
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
https://doi.org/10.1103/PhysRevLett.100.056802
|
38 |
X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Weak antilocalization in epitaxial graphene: Evidence for chiral electrons, Phys. Rev. Lett. 98(13), 136801 (2007)
https://doi.org/10.1103/PhysRevLett.98.136801
|
39 |
G. Fishman and G. Lampel, Spin relaxation of photoelectrons in p-type gallium arsenide, Phys. Rev. B 16(2), 820 (1977)
https://doi.org/10.1103/PhysRevB.16.820
|
40 |
Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Spin relaxation in GaAs(110) quantum wells, Phys. Rev. Lett. 83(20), 4196 (1999)
https://doi.org/10.1103/PhysRevLett.83.4196
|
41 |
A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro Neto, Extrinsic spin Hall effect induced by resonant Skew scattering in graphene, Phys. Rev. Lett. 112(6), 066601 (2014)
https://doi.org/10.1103/PhysRevLett.112.066601
|
42 |
J. Hu, J. Alicea, R. Wu, and M. Franz, Giant topological insulator gap in graphene with 5d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
https://doi.org/10.1103/PhysRevLett.109.266801
|
43 |
J. M. Zuo and B. Q. Li, Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces, Phys. Rev. Lett. 88(25), 255502 (2002)
https://doi.org/10.1103/PhysRevLett.88.255502
|
44 |
F. J. Ribeiro, J. B. Neaton, S. G. Louie, and M. L. Cohen, Mechanism for bias-assisted indium mass transport on carbon nanotube surfaces, Phys. Rev. B 72(7), 075302 (2005)
https://doi.org/10.1103/PhysRevB.72.075302
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|