Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (4) : 127210    https://doi.org/10.1007/s11467-017-0677-7
RESEARCH ARTICLE
Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction
Jian-Lei Ge1,Tian-Ru Wu2,Ming Gao3,Zhan-Bin Bai1,Lu Cao1,Xue-Feng Wang3,Yu-Yuan Qin1(),Feng-Qi Song1()
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Nanjing University, Nanjing 210093, China
2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3. School of Electronic Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
 Download: PDF(2114 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was suppressed after the Bi-cluster deposition. Detailed WL data were obtained while the gate and temperature were changed. Using E. McCann’s formula, the spin-relaxation time was extracted, which was found to increase with the elastic scattering time. This is attributed to the Elliott–Yafet spin relaxation and Kane–Mele type spin–orbit coupling (SOC). The SOC strength was enhanced to 2.64 meV as a result of the first deposition. The coverage effect is discussed according to the measurement after the second deposition.

Keywords graphene      cluster deposition      weak localization      spin–orbit coupling     
Corresponding Author(s): Yu-Yuan Qin,Feng-Qi Song   
Issue Date: 13 April 2017
 Cite this article:   
Jian-Lei Ge,Tian-Ru Wu,Ming Gao, et al. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0677-7
https://academic.hep.com.cn/fop/EN/Y2017/V12/I4/127210
1 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
2 J. Zhang, C. Triola, and E. Rossi, Proximity effect in=graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
https://doi.org/10.1103/PhysRevLett.112.096802
3 K. H. Jin and S. H. Jhi, Proximity-induced giant spin– orbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
https://doi.org/10.1103/PhysRevB.87.075442
4 Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
https://doi.org/10.1103/PhysRevLett.112.116404
5 J. Zhou, Q. Liang, and J. Dong, Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene, Carbon 48(5), 1405 (2010)
https://doi.org/10.1016/j.carbon.2009.12.031
6 M. Gmitra, D. Kochan, and J. Fabian, Spin–orbit coupling in hydrogenated graphene, Phys. Rev. Lett. 110(24), 246602 (2013)
https://doi.org/10.1103/PhysRevLett.110.246602
7 A. Cresti, D. Van Tuan, D. Soriano, A. W. Cummings, and S. Roche, Multiple quantum phases in graphene with enhanced spin–orbit coupling: From the quantum spin Hall regime to the spin Hall effect and a robust metallic state, Phys. Rev. Lett. 113(24), 246603 (2014)
https://doi.org/10.1103/PhysRevLett.113.246603
8 C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Engineering a robust quantum spin Hall state in graphene via adatom deposition, Phys. Rev. X 1(2), 021001 (2011)
https://doi.org/10.1103/PhysRevX.1.021001
9 A. H. Castro Neto and F. Guinea, Impurity-induced spin–orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
https://doi.org/10.1103/PhysRevLett.103.026804
10 H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
https://doi.org/10.1103/PhysRevLett.109.116803
11 P. Lee, K. H. Jin, S. J. Sung, J. G. Kim, M. T. Ryu, H. M. Park, S. H. Jhi, N. Kim, Y. Kim, S. U. Yu, K. S. Kim, D. Y. Noh, and J. Chung, Proximity effect induced electronic properties of graphene on Bi2Te2Se, ACS Nano 9(11), 10861 (2015)
https://doi.org/10.1021/acsnano.5b03821
12 S. Rajput, Y. Y. Li, M. Weinert, and L. Li, Indirect interlayer bonding in graphene–topological insulator van der Waals heterostructure: Giant spin–orbit splitting of the graphene Dirac states, ACS Nano 10(9), 8450 (2016)
https://doi.org/10.1021/acsnano.6b03387
13 J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro Neto, and B. Ozyilmaz, Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene, Nat. Phys. 9(5), 284 (2013)
14 J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, S. J. Baeck, J. H. Ahn, A. Ferreira, M. A. Cazalilla, A. H. C. Neto, and B. Özyilmaz, Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun. 5, 4748 (2014)
https://doi.org/10.1038/ncomms5748
15 Y. Han, G. X. Ge, J. G. Wan, J. J. Zhao, F. Q. Song, and G. H. Wang, Predicted giant magnetic anisotropy energy of highly stable Ir dimer on single-vacancy graphene, Phys. Rev. B 87(15), 155408 (2013)
https://doi.org/10.1103/PhysRevB.87.155408
16 M. V. Ulybyshev and M. I. Katsnelson, Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study, Phys. Rev. Lett. 114(24), 246801 (2015)
https://doi.org/10.1103/PhysRevLett.114.246801
17 Y. C. Lin, P. Y. Teng, P. W. Chiu, and K. Suenaga, Exploring the single atom spin state by electron spectroscopy, Phys. Rev. Lett. 115(20), 206803 (2015)
https://doi.org/10.1103/PhysRevLett.115.206803
18 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of largearea graphene films for high-performance transparent conductive electrodes, Nano Lett. 9(12), 4359 (2009)
https://doi.org/10.1021/nl902623y
19 M. Han, C. Xu, D. Zhu, L. Yang, J. Zhang, Y. Chen, K. Ding, F. Song, and G. Wang, Controllable synthesis of two-dimensional metal nanoparticle arrays with oriented size and number density gradients, Adv. Mater. 19(19), 2979 (2007)
https://doi.org/10.1002/adma.200602947
20 F. Song, M. Han, M. Liu, B. Chen, J. Wan, and G. Wang, Experimental observation of nanojets formed by heating PbO-coated Pb clusters, Phys. Rev. Lett. 94(9), 093401 (2005)
https://doi.org/10.1103/PhysRevLett.94.093401
21 Y. W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Temperature dependent electron transport in graphene, Eur. Phys. J. Spec. Top. 148(1), 15 (2007)
https://doi.org/10.1140/epjst/e2007-00221-9
22 J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nat. Phys. 4(5), 377 (2008)
23 Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu, Transport study of graphene adsorbed with indium adatoms, Phys. Rev. B 91(8), 085411 (2015)
https://doi.org/10.1103/PhysRevB.91.085411
24 K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, Manipulation of spin transport in graphene by surface chemical doping, Phys. Rev. Lett. 104(18), 187201 (2010)
https://doi.org/10.1103/PhysRevLett.104.187201
25 X. Wang, X. Pan, M. Gao, J. Yu, J. Jiang, J. Zhang, H. Zuo, M. Zhang, Z. Wei, W. Niu, Z. Xia, X. Wan, Y. Chen, F. Song, Y. Xu, B. Wang, G. Wang, and R. Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in Zr-SiS, Adv. Electron. Mater 2 (10) (2016)
26 E. McCann and V. I. Fal’ko, z→−zsymmetry of spin– orbit coupling and weak localization in graphene, Phys. Rev. Lett. 108(16), 166606 (2012)
https://doi.org/10.1103/PhysRevLett.108.166606
27 E. McCann and V. I. Fal’ko, Weak localization and spin– orbit coupling in monolayer and bilayer graphene, in: H. Aoki and S. M. Dresselhaus (Eds.), Physics of Graphene, Springer International Publishing, 2014
https://doi.org/10.1007/978-3-319-02633-6_10
28 F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett. 103(22), 226801 (2009)
https://doi.org/10.1103/PhysRevLett.103.226801
29 K. I. Imura, Y. Kuramoto, and K. Nomura, Weak localization properties of the doped Z2 topological insulator, Phys. Rev. B 80(8), 085119 (2009)
https://doi.org/10.1103/PhysRevB.80.085119
30 K. I. Imura, Y. Kuramoto, and K. Nomura, Antilocalization of graphene under the substrate electric field, Europhys. Lett. 89(1), 17009 (2010)
https://doi.org/10.1209/0295-5075/89/17009
31 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin–orbit interactions in graphene sheets, Phys. Rev. B 74(16), 165310 (2006)
https://doi.org/10.1103/PhysRevB.74.165310
32 M. Zarea and N. Sandler, Rashba spin–orbit interaction in graphene and zigzag nanoribbons, Phys. Rev. B 79(16), 165442 (2009)
https://doi.org/10.1103/PhysRevB.79.165442
33 P. Rakyta, A. Kormányos, and J. Cserti, Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin–orbit coupling, Phys. Rev. B 82(11), 113405 (2010)
https://doi.org/10.1103/PhysRevB.82.113405
34 D. Huertas-Hernando, F. Guinea, and A. Brataas, Spin–orbit-mediated spin relaxation in graphene, Phys. Rev. Lett. 103(14), 146801 (2009)
https://doi.org/10.1103/PhysRevLett.103.146801
35 E. V. Zhizhin, A. Varykhalov, A. G. Rybkin, A. A. Rybkina, D. A. Pudikov, D. Marchenko, J. Sánchez-Barriga, I. I. Klimovskikh, G. G. Vladimirov, O. Rader, and A. M. Shikin, Spin splitting of Dirac fermions in graphene on Ni intercalated with alloy of Bi and Au, Carbon 93, 984 (2015)
https://doi.org/10.1016/j.carbon.2015.05.104
36 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97(1), 016801 (2006)
https://doi.org/10.1103/PhysRevLett.97.016801
37 F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
https://doi.org/10.1103/PhysRevLett.100.056802
38 X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Weak antilocalization in epitaxial graphene: Evidence for chiral electrons, Phys. Rev. Lett. 98(13), 136801 (2007)
https://doi.org/10.1103/PhysRevLett.98.136801
39 G. Fishman and G. Lampel, Spin relaxation of photoelectrons in p-type gallium arsenide, Phys. Rev. B 16(2), 820 (1977)
https://doi.org/10.1103/PhysRevB.16.820
40 Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Spin relaxation in GaAs(110) quantum wells, Phys. Rev. Lett. 83(20), 4196 (1999)
https://doi.org/10.1103/PhysRevLett.83.4196
41 A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro Neto, Extrinsic spin Hall effect induced by resonant Skew scattering in graphene, Phys. Rev. Lett. 112(6), 066601 (2014)
https://doi.org/10.1103/PhysRevLett.112.066601
42 J. Hu, J. Alicea, R. Wu, and M. Franz, Giant topological insulator gap in graphene with 5d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
https://doi.org/10.1103/PhysRevLett.109.266801
43 J. M. Zuo and B. Q. Li, Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces, Phys. Rev. Lett. 88(25), 255502 (2002)
https://doi.org/10.1103/PhysRevLett.88.255502
44 F. J. Ribeiro, J. B. Neaton, S. G. Louie, and M. L. Cohen, Mechanism for bias-assisted indium mass transport on carbon nanotube surfaces, Phys. Rev. B 72(7), 075302 (2005)
https://doi.org/10.1103/PhysRevB.72.075302
[1] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[2] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[3] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[4] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[5] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[6] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[7] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[8] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[9] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[10] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[11] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[12] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[13] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[14] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[15] Long-Jing Yin (殷隆晶),Ke-Ke Bai (白珂珂),Wen-Xiao Wang (王文晓),Si-Yu Li (李思宇),Yu Zhang (张钰),Lin He (何林). Landau quantization of Dirac fermions in graphene and its multilayers[J]. Front. Phys. , 2017, 12(4): 127208-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed