Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137203    https://doi.org/10.1007/s11467-017-0744-0
RESEARCH ARTICLE
Electron drift velocity and mobility in graphene
Hai-Ming Dong1, Yi-Feng Duan1(), Fei Huang2,3(), Jin-Long Liu3
1. School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2. Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221116, China
3. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
 Download: PDF(258 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.

Keywords graphene      mobility      nano-electronic devices     
Corresponding Author(s): Yi-Feng Duan,Fei Huang   
Issue Date: 23 April 2018
 Cite this article:   
Hai-Ming Dong,Yi-Feng Duan,Fei Huang, et al. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0744-0
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137203
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigoreva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
3 K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett. 101(9), 096802 (2008)
https://doi.org/10.1103/PhysRevLett.101.096802
4 F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett. 10(2), 715 (2010)
https://doi.org/10.1021/nl9039636
5 G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Appl. Phys. Lett. 95(3), 033103 (2009)
https://doi.org/10.1063/1.3180707
6 L. M. Zhang and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett. 100(11), 116804 (2008)
https://doi.org/10.1103/PhysRevLett.100.116804
7 Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at Gigahertz frequencies, Nano Lett. 9(1), 422 (2009)
https://doi.org/10.1021/nl803316h
8 Y. Zhang and R. Tsu, Binding graphene sheets together using silicon: Graphene/silicon superlattice, Nanoscale Res. Lett. 5(5), 805 (2010)
https://doi.org/10.1007/s11671-010-9561-x
9 T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Graphene field-effect devices, Eur. Phys. J. Spec. Top. 148(1), 19 (2007)
https://doi.org/10.1140/epjst/e2007-00222-8
10 I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
https://doi.org/10.1038/nnano.2008.268
11 A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport properties of graphene in the highcurrent limit, Phys. Rev. Lett. 103(7), 076601 (2009)
https://doi.org/10.1103/PhysRevLett.103.076601
12 J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206 (2008)
https://doi.org/10.1038/nnano.2008.58
13 X. F. Wang and T. Chakraborty, Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions, Phys. Rev. B 75(3), 033408 (2007)
https://doi.org/10.1103/PhysRevB.75.033408
14 X.-L. Lei, Balance Equation Approach to Electron Transport in Semiconductors, World Scientific, 2000
15 X. F. Zhao, J. Zhang, S. M. Chen, and W. Xu, Cerenkov acoustic-phonon emission generated electrically from a polar semiconductor,J. Appl. Phys. 105(10), 104514 (2009)
https://doi.org/10.1063/1.3130400
16 W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)
https://doi.org/10.1103/PhysRevB.79.073403
17 H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)
https://doi.org/10.1103/PhysRevB.77.235402
18 T. Stauber, N. M. R. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Phys. Rev. B 76(20), 205423 (2007)
https://doi.org/10.1103/PhysRevB.76.205423
19 W. K. Tse and S. S. Das, Phonon-induced many-body renormalization of the electronic properties of graphene, Phys. Rev. Lett. 99(23), 236802 (2007)
https://doi.org/10.1103/PhysRevLett.99.236802
[1] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[2] Ming-Chao Xiao, Jie Liu, Yuan-Yuan Hu, Shuai Wang, Lang Jiang. Nonideal double-slope effect in organic field-effect transistors[J]. Front. Phys. , 2021, 16(1): 13305-.
[3] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[4] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[5] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[6] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[7] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[8] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[9] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[10] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[11] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[12] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[13] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[14] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[15] Tian-Fu Gao, Zhi-Gang Zheng, Jin-Can Chen. Resonant current in coupled inertial Brownian particles with delayed-feedback control[J]. Front. Phys. , 2017, 12(6): 120506-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed