|
|
Electron drift velocity and mobility in graphene |
Hai-Ming Dong1, Yi-Feng Duan1( ), Fei Huang2,3( ), Jin-Long Liu3 |
1. School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China 2. Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221116, China 3. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.
|
Keywords
graphene
mobility
nano-electronic devices
|
Corresponding Author(s):
Yi-Feng Duan,Fei Huang
|
Issue Date: 23 April 2018
|
|
1 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigoreva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
2 |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
|
3 |
K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett. 101(9), 096802 (2008)
https://doi.org/10.1103/PhysRevLett.101.096802
|
4 |
F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett. 10(2), 715 (2010)
https://doi.org/10.1021/nl9039636
|
5 |
G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Appl. Phys. Lett. 95(3), 033103 (2009)
https://doi.org/10.1063/1.3180707
|
6 |
L. M. Zhang and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett. 100(11), 116804 (2008)
https://doi.org/10.1103/PhysRevLett.100.116804
|
7 |
Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at Gigahertz frequencies, Nano Lett. 9(1), 422 (2009)
https://doi.org/10.1021/nl803316h
|
8 |
Y. Zhang and R. Tsu, Binding graphene sheets together using silicon: Graphene/silicon superlattice, Nanoscale Res. Lett. 5(5), 805 (2010)
https://doi.org/10.1007/s11671-010-9561-x
|
9 |
T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Graphene field-effect devices, Eur. Phys. J. Spec. Top. 148(1), 19 (2007)
https://doi.org/10.1140/epjst/e2007-00222-8
|
10 |
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
https://doi.org/10.1038/nnano.2008.268
|
11 |
A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport properties of graphene in the highcurrent limit, Phys. Rev. Lett. 103(7), 076601 (2009)
https://doi.org/10.1103/PhysRevLett.103.076601
|
12 |
J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206 (2008)
https://doi.org/10.1038/nnano.2008.58
|
13 |
X. F. Wang and T. Chakraborty, Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions, Phys. Rev. B 75(3), 033408 (2007)
https://doi.org/10.1103/PhysRevB.75.033408
|
14 |
X.-L. Lei, Balance Equation Approach to Electron Transport in Semiconductors, World Scientific, 2000
|
15 |
X. F. Zhao, J. Zhang, S. M. Chen, and W. Xu, Cerenkov acoustic-phonon emission generated electrically from a polar semiconductor,J. Appl. Phys. 105(10), 104514 (2009)
https://doi.org/10.1063/1.3130400
|
16 |
W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)
https://doi.org/10.1103/PhysRevB.79.073403
|
17 |
H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)
https://doi.org/10.1103/PhysRevB.77.235402
|
18 |
T. Stauber, N. M. R. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Phys. Rev. B 76(20), 205423 (2007)
https://doi.org/10.1103/PhysRevB.76.205423
|
19 |
W. K. Tse and S. S. Das, Phonon-induced many-body renormalization of the electronic properties of graphene, Phys. Rev. Lett. 99(23), 236802 (2007)
https://doi.org/10.1103/PhysRevLett.99.236802
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|