Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (3) : 138104    https://doi.org/10.1007/s11467-018-0760-8
RESEARCH ARTICLE
SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts
Zhinan Ma (马志楠)1,2(), Jibin Zhuang (庄吉彬)1, Xu Zhang (张旭)3, Zhen Zhou (周震)2,3()
1. School of Science, North University of China, Taiyuan 030051, China
2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
3. School of Materials Science and Engineering, National Institute for Advanced Materials, Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, China
 Download: PDF(3718 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV–V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38–2.21 eV. The bandgaps straddle the redox potentials of water at pH= 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.

Keywords graphene      phosphorene      group IV-V monolayers      photocatalytic water splitting      SiP 2D materials     
Corresponding Author(s): Zhinan Ma (马志楠),Zhen Zhou (周震)   
Issue Date: 20 March 2018
 Cite this article:   
Zhinan Ma (马志楠),Jibin Zhuang (庄吉彬),Xu Zhang (张旭), et al. SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0760-8
https://academic.hep.com.cn/fop/EN/Y2018/V13/I3/138104
1 Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
2 Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)
https://doi.org/10.1002/wcms.1224
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
4 D. Pacilé, J. C. Meyer, C. O. Girit, and A. Zettl, The two-dimensional phase of boron nitride: Few-atomiclayer sheets and suspended membranes, Appl. Phys. Lett. 92(13), 133107 (2008)
https://doi.org/10.1063/1.2903702
5 Y. Lin, T. V. Williams, and J. W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1(1), 277 (2010)
https://doi.org/10.1021/jz9002108
6 R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, Hunting for monolayer boron nitride: Optical and Raman signatures, Small 7(4), 465 (2011)
https://doi.org/10.1002/smll.201001628
7 C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, Anomalous lattice vibrations of single- and fewlayer MoS2, ACS Nano 4(5), 2695 (2010)
https://doi.org/10.1021/nn1003937
8 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
9 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
10 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
11 E. S. Reich, Phosphorene excites materials scientists, Nature(7486), 19 (2014)
12 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
https://doi.org/10.1002/adma.201102306
13 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Twodimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)
https://doi.org/10.1021/nn204153h
14 X. Zhang, Z. Zhang, and Z. Zhou, MXene-based materials for electrochemical energy storage, J. Energy Chem. 27(1), 73 (2017)
https://doi.org/10.1016/j.jechem.2017.08.004
15 X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
https://doi.org/10.1002/advs.201600062
16 J. S. Lee, X. Wang, H. Luo, and S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids, Adv. Mater. 22(9), 1004 (2010)
https://doi.org/10.1002/adma.200903403
17 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
18 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
https://doi.org/10.1126/science.1157996
19 Y. Lin and J. W. Connell, Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene, Nanoscale 4(22), 6908 (2012)
https://doi.org/10.1039/c2nr32201c
20 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. C. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
21 S. J. R. Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G. Z. J. Loke, H. Lin, I. Verzhbitskiy, S. M. Poh, H. Xu, C. T. Nai, W. Zhou, G. Eda, B. Jia, and K. P. Loh, Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity, J. Am. Chem. Soc. 139(6), 2504 (2017)
https://doi.org/10.1021/jacs.6b13238
22 A. SäynSätjoki, L. Karvonen, H. Rostami, A. Autere, S. Mehravar, A. Lombardo, R. A. Norwood, T. Hasan, N. Peyghambarian, H. Lipsanen, K. Kieu, A. C. Ferrari, M. Polini, and Z. Sun, Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers, Nat. Commun. 8(1), 893 (2017)
23 J. S. Qiao, X. H. Kong, Z. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
https://doi.org/10.1038/ncomms5475
24 H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44(9), 2732 (2015)
https://doi.org/10.1039/C4CS00257A
25 M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)
https://doi.org/10.1002/adfm.201202502
26 A. Du, S. Sanvito, and S. C. Smith, First-principles prediction of metal-free magnetism and intrinsic halfmetallicity in graphitic carbon nitride, Phys. Rev. Lett. 108(19), 197207 (2012)
https://doi.org/10.1103/PhysRevLett.108.197207
27 X. Zhao, Z. Ma, D. Wu, X. Zhang, Y. Jing, and Z. Zhou, Computational study of catalytic effect of C3N4 on H2 release from complex hydrides, Int. J. Hydrogen Energy 40(29), 8897 (2015)
https://doi.org/10.1016/j.ijhydene.2015.05.041
28 S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
29 H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45(38), 6303 (2006)
https://doi.org/10.1002/anie.200600321
30 Y. Chen, J. Xi, D. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys, ACS Nano 7(5), 4610 (2013)
https://doi.org/10.1021/nn401420h
31 S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)
https://doi.org/10.1021/nl302584w
32 H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Anomalous Raman spectra and thickness-dependent electronic properties of WSe2, Phys. Rev. B 87(16), 165409 (2013)
https://doi.org/10.1103/PhysRevB.87.165409
33 S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
https://doi.org/10.1002/anie.201411246
34 S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
https://doi.org/10.1002/anie.201507568
35 S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S. A. Yang, Z. Zhu, Z. Chen, and H. Zeng, Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator, Nano Lett. 17(6), 3434 (2017)
https://doi.org/10.1021/acs.nanolett.7b00297
36 S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47, 982 (2018)
https://doi.org/10.1039/C7CS00125H
37 Y. Guo, S. Zhang, and Q. Wang, Electronic and optical properties of silicon based porous sheets, Phys. Chem. Chem. Phys. 16(31), 16832 (2014)
https://doi.org/10.1039/C4CP01491J
38 S. Zhang, S. Guo, Y. Huang, Z. Zhu, B. Cai, M. Xie, W. Zhou, and H. Zeng, Two-dimensional SiP: an unexplored direct band-gap semiconductor, 2D Mater. 4, 015030 (2017)
39 Y. Ding and Y. Wang, Density functional theory study of the silicene-like SiX and XSi3 (X= B, C, N, Al, P) Honeycomb Lattices: The various buckled structures and versatile electronic properties, J. Phys. Chem. C 117(35), 18266 (2013)
https://doi.org/10.1021/jp407666m
40 L. Zhou, Y. Guo, and J. Zhao, GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures, Phys. E 95, 149 (2018)
https://doi.org/10.1016/j.physe.2017.08.016
41 C. Barreteau, B. Michon, C. Besnard, and E. Giannini, High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors, J. Cryst. Growth 443, 75 (2016)
https://doi.org/10.1016/j.jcrysgro.2016.03.019
42 MedeA® version 2.16. MedeA® is registered trademark of Materials Design, Inc., Angel Fire, New Mexico, USA
43 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
44 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
45 G. Martyna, M. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
https://doi.org/10.1063/1.463940
46 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
47 H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)
https://doi.org/10.1021/cm401661x
48 V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318(5855), 1424 (2007)
https://doi.org/10.1126/science.1148841
[1] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[2] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[3] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[4] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[5] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[6] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[7] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[8] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[11] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[12] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[13] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[14] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
[15] Long-Jing Yin (殷隆晶),Ke-Ke Bai (白珂珂),Wen-Xiao Wang (王文晓),Si-Yu Li (李思宇),Yu Zhang (张钰),Lin He (何林). Landau quantization of Dirac fermions in graphene and its multilayers[J]. Front. Phys. , 2017, 12(4): 127208-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed