|
|
SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts |
Zhinan Ma (马志楠)1,2( ), Jibin Zhuang (庄吉彬)1, Xu Zhang (张旭)3, Zhen Zhou (周震)2,3( ) |
1. School of Science, North University of China, Taiyuan 030051, China 2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China 3. School of Materials Science and Engineering, National Institute for Advanced Materials, Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, China |
|
|
Abstract Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV–V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38–2.21 eV. The bandgaps straddle the redox potentials of water at pH= 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.
|
Keywords
graphene
phosphorene
group IV-V monolayers
photocatalytic water splitting
SiP 2D materials
|
Corresponding Author(s):
Zhinan Ma (马志楠),Zhen Zhou (周震)
|
Issue Date: 20 March 2018
|
|
1 |
Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
|
2 |
Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)
https://doi.org/10.1002/wcms.1224
|
3 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
4 |
D. Pacilé, J. C. Meyer, C. O. Girit, and A. Zettl, The two-dimensional phase of boron nitride: Few-atomiclayer sheets and suspended membranes, Appl. Phys. Lett. 92(13), 133107 (2008)
https://doi.org/10.1063/1.2903702
|
5 |
Y. Lin, T. V. Williams, and J. W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1(1), 277 (2010)
https://doi.org/10.1021/jz9002108
|
6 |
R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, Hunting for monolayer boron nitride: Optical and Raman signatures, Small 7(4), 465 (2011)
https://doi.org/10.1002/smll.201001628
|
7 |
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, Anomalous lattice vibrations of single- and fewlayer MoS2, ACS Nano 4(5), 2695 (2010)
https://doi.org/10.1021/nn1003937
|
8 |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
|
9 |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
|
10 |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
|
11 |
E. S. Reich, Phosphorene excites materials scientists, Nature(7486), 19 (2014)
|
12 |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
https://doi.org/10.1002/adma.201102306
|
13 |
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Twodimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)
https://doi.org/10.1021/nn204153h
|
14 |
X. Zhang, Z. Zhang, and Z. Zhou, MXene-based materials for electrochemical energy storage, J. Energy Chem. 27(1), 73 (2017)
https://doi.org/10.1016/j.jechem.2017.08.004
|
15 |
X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
https://doi.org/10.1002/advs.201600062
|
16 |
J. S. Lee, X. Wang, H. Luo, and S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids, Adv. Mater. 22(9), 1004 (2010)
https://doi.org/10.1002/adma.200903403
|
17 |
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
|
18 |
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
https://doi.org/10.1126/science.1157996
|
19 |
Y. Lin and J. W. Connell, Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene, Nanoscale 4(22), 6908 (2012)
https://doi.org/10.1039/c2nr32201c
|
20 |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. C. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
|
21 |
S. J. R. Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G. Z. J. Loke, H. Lin, I. Verzhbitskiy, S. M. Poh, H. Xu, C. T. Nai, W. Zhou, G. Eda, B. Jia, and K. P. Loh, Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity, J. Am. Chem. Soc. 139(6), 2504 (2017)
https://doi.org/10.1021/jacs.6b13238
|
22 |
A. SäynSätjoki, L. Karvonen, H. Rostami, A. Autere, S. Mehravar, A. Lombardo, R. A. Norwood, T. Hasan, N. Peyghambarian, H. Lipsanen, K. Kieu, A. C. Ferrari, M. Polini, and Z. Sun, Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers, Nat. Commun. 8(1), 893 (2017)
|
23 |
J. S. Qiao, X. H. Kong, Z. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
https://doi.org/10.1038/ncomms5475
|
24 |
H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44(9), 2732 (2015)
https://doi.org/10.1039/C4CS00257A
|
25 |
M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)
https://doi.org/10.1002/adfm.201202502
|
26 |
A. Du, S. Sanvito, and S. C. Smith, First-principles prediction of metal-free magnetism and intrinsic halfmetallicity in graphitic carbon nitride, Phys. Rev. Lett. 108(19), 197207 (2012)
https://doi.org/10.1103/PhysRevLett.108.197207
|
27 |
X. Zhao, Z. Ma, D. Wu, X. Zhang, Y. Jing, and Z. Zhou, Computational study of catalytic effect of C3N4 on H2 release from complex hydrides, Int. J. Hydrogen Energy 40(29), 8897 (2015)
https://doi.org/10.1016/j.ijhydene.2015.05.041
|
28 |
S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
|
29 |
H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45(38), 6303 (2006)
https://doi.org/10.1002/anie.200600321
|
30 |
Y. Chen, J. Xi, D. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys, ACS Nano 7(5), 4610 (2013)
https://doi.org/10.1021/nn401420h
|
31 |
S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)
https://doi.org/10.1021/nl302584w
|
32 |
H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Anomalous Raman spectra and thickness-dependent electronic properties of WSe2, Phys. Rev. B 87(16), 165409 (2013)
https://doi.org/10.1103/PhysRevB.87.165409
|
33 |
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
https://doi.org/10.1002/anie.201411246
|
34 |
S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
https://doi.org/10.1002/anie.201507568
|
35 |
S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S. A. Yang, Z. Zhu, Z. Chen, and H. Zeng, Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator, Nano Lett. 17(6), 3434 (2017)
https://doi.org/10.1021/acs.nanolett.7b00297
|
36 |
S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47, 982 (2018)
https://doi.org/10.1039/C7CS00125H
|
37 |
Y. Guo, S. Zhang, and Q. Wang, Electronic and optical properties of silicon based porous sheets, Phys. Chem. Chem. Phys. 16(31), 16832 (2014)
https://doi.org/10.1039/C4CP01491J
|
38 |
S. Zhang, S. Guo, Y. Huang, Z. Zhu, B. Cai, M. Xie, W. Zhou, and H. Zeng, Two-dimensional SiP: an unexplored direct band-gap semiconductor, 2D Mater. 4, 015030 (2017)
|
39 |
Y. Ding and Y. Wang, Density functional theory study of the silicene-like SiX and XSi3 (X= B, C, N, Al, P) Honeycomb Lattices: The various buckled structures and versatile electronic properties, J. Phys. Chem. C 117(35), 18266 (2013)
https://doi.org/10.1021/jp407666m
|
40 |
L. Zhou, Y. Guo, and J. Zhao, GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures, Phys. E 95, 149 (2018)
https://doi.org/10.1016/j.physe.2017.08.016
|
41 |
C. Barreteau, B. Michon, C. Besnard, and E. Giannini, High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors, J. Cryst. Growth 443, 75 (2016)
https://doi.org/10.1016/j.jcrysgro.2016.03.019
|
42 |
MedeA® version 2.16. MedeA® is registered trademark of Materials Design, Inc., Angel Fire, New Mexico, USA
|
43 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
44 |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
45 |
G. Martyna, M. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
https://doi.org/10.1063/1.463940
|
46 |
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
|
47 |
H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)
https://doi.org/10.1021/cm401661x
|
48 |
V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318(5855), 1424 (2007)
https://doi.org/10.1126/science.1148841
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|