|
|
Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms |
Xinzhou Deng1,2, Hualing Yang3, Shifei Qi1,3( ), Xiaohong Xu3, Zhenhua Qiao1,2( ) |
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 2. CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China 3. School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China |
|
|
Abstract Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in condensed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2Te3 but at an extremely low observational temperature, thereby limiting its potential application in dissipationless quantum electronics. By employing first-principles calculations, we study the electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a compensated n–p co-doping scheme. Our findings are as follows: i) The electrostatic attraction between the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their undesirable clustering. ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferromagnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba splitting energies in Re–B and Pt–B co-doped graphene systems can reach up to 158 and 85 meV, respectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling strength.
|
Keywords
graphene
quantum anomalous Hall effect
spin-orbit coupling
|
Corresponding Author(s):
Shifei Qi,Zhenhua Qiao
|
Issue Date: 29 June 2018
|
|
1 |
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
|
2 |
H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Quantum anomalous Hall effect and related topological electronic states, Adv. Phys. 64(3), 227 (2015)
https://doi.org/10.1080/00018732.2015.1068524
|
3 |
Y. F. Ren, Z. H. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys. 79(6), 066501 (2016)
https://doi.org/10.1088/0034-4885/79/6/066501
|
4 |
C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)
https://doi.org/10.1146/annurev-conmatphys-031115-011417
|
5 |
C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Quantum anomalous Hall effect in Hg1−yMny Te quantum wells, Phys. Rev. Lett. 101(14), 146802 (2008)
https://doi.org/10.1103/PhysRevLett.101.146802
|
6 |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
|
7 |
M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109(5), 055502 (2012)
https://doi.org/10.1103/PhysRevLett.109.055502
|
8 |
J. Y. Zhang, B. Zhao, and Z. Q. Yang, Abundant topological states in silicene with transition metal adatoms, Phys. Rev. B 88(16), 165422 (2013)
https://doi.org/10.1103/PhysRevB.88.165422
|
9 |
X. L. Zhang, L. F. Liu, and W. M. Liu, Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene, Sci. Rep. 3(1), 2908 (2013)
https://doi.org/10.1038/srep02908
|
10 |
M. Yang, X. L. Zhang, and W. M. Liu, Tunable topological quantum states in three- and two-dimensional materials, Front. Phys. 10(2), 108102 (2015)
https://doi.org/10.1007/s11467-015-0463-3
|
11 |
C. C. Liu, J. J. Zhou, and Y. G. Yao, Valley-polarized quantum anomalous Hall phases and tunable topological phase transitions in half-hydrogenated Bi honeycomb monolayers, Phys. Rev. B 91(16), 165430 (2015)
https://doi.org/10.1103/PhysRevB.91.165430
|
12 |
Z. H. Qiao, S. Y. Yang, W. X. Feng, W.-K. Tse, J. Ding, Y. G. Yao, J. Wang, and Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Phys. Rev. B 82, 161414(R) (2010)
|
13 |
Z. H. Qiao, H. Jiang, X. Li, Y. G. Yao, and Q. Niu, Microscopic theory of quantum anomalous Hall effect in graphene, Phys. Rev. B 85(11), 115439 (2012)
https://doi.org/10.1103/PhysRevB.85.115439
|
14 |
J. Ding, Z. H. Qiao, W. X. Feng, Y. G. Yao, and Q. Niu, Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initiostudy, Phys. Rev. B 84(19), 195444 (2011)
https://doi.org/10.1103/PhysRevB.84.195444
|
15 |
H. B. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms, Phys. Rev. Lett. 108(5), 056802 (2012)
https://doi.org/10.1103/PhysRevLett.108.056802
|
16 |
Z. H. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Y. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
https://doi.org/10.1103/PhysRevLett.112.116404
|
17 |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
|
18 |
L. J. Yin, K. K. Bai, W. X. Wang, S. Y. Li, Y. Zhang, and L. He, Landau quantization of Dirac fermions in graphene and its multilayers, Front. Phys. 12(4), 127208 (2017)
https://doi.org/10.1007/s11467-017-0655-0
|
19 |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
|
20 |
Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S. Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3, Phys. Rev. B 81(19), 195203 (2010)
https://doi.org/10.1103/PhysRevB.81.195203
|
21 |
C. Niu, Y. Dai, M. Guo, W. Wei, Y. Ma, and B. Huang, Mn induced ferromagnetism and modulated topological surface states in Bi2Te3, Appl. Phys. Lett. 98(25), 252502 (2011)
https://doi.org/10.1063/1.3601020
|
22 |
P. P. J. Haazen, J. B. Laloë, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3, Appl. Phys. Lett. 100(8), 082404 (2012)
https://doi.org/10.1063/1.3688043
|
23 |
T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78(3), 809 (2006)
https://doi.org/10.1103/RevModPhys.78.809
|
24 |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
|
25 |
J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator, Nat. Phys. 10(10), 731 (2014)
|
26 |
X. Kou, S. T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T. K. Lee, W. L. Lee, and K. L. Wang, Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit, Phys. Rev. Lett. 113(13), 137201 (2014)
https://doi.org/10.1103/PhysRevLett.113.137201
|
27 |
C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater. 14(5), 473 (2015)
https://doi.org/10.1038/nmat4204
|
28 |
S. F. Qi, Z. H. Qiao, X. Z. Deng, E. D. Cubuk, H. Chen, W. G. Zhu, E. Kaxiras, S. B. Zhang, X. H. Xu, and Z. Y. Zhang, High-temperature quantum anomalous Hall effect in n–p codoped topological insulators, Phys. Rev. Lett. 117(5), 056804 (2016)
https://doi.org/10.1103/PhysRevLett.117.056804
|
29 |
Y. Ou, C. Liu, G. Y. Jiang, Y. Feng, D. Y. Zhao, W. X. Wu, X. X. Wang, W. Li, C. L. Song, L. L. Wang, W. B. Wang, W. D. Wu, Y. Y. Wang, K. He, X. C. Ma, and Q. K. Xue, Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator, Adv. Mater. 30(1), 1703062 (2018)
https://doi.org/10.1002/adma.201703062
|
30 |
Y. G. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spin-orbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007)
https://doi.org/10.1103/PhysRevB.75.041401
|
31 |
M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
https://doi.org/10.1103/PhysRevB.80.235431
|
32 |
A. H. Castro Neto and F. Guinea, Impurity-induced spin-orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
https://doi.org/10.1103/PhysRevLett.103.026804
|
33 |
J. Hu, J. Alicea, R. Q. Wu, and M. Franz, Giant topological insulator gap in graphene with 5 d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
https://doi.org/10.1103/PhysRevLett.109.266801
|
34 |
H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
https://doi.org/10.1103/PhysRevLett.109.116803
|
35 |
T. Eelbo, M. Waśniowska, P. Thakur, M. Gyamfi, B. Sachs, T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein, and R. Wiesendanger, Adatoms and clusters of 3 d transition metals on graphene: Electronic and magnetic configurations, Phys. Rev. Lett. 110(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.110.136804
|
36 |
H. Chen, Q. Niu, Z. Y. Zhang, and A. H. MacDonald, Gate-tunable exchange coupling between cobalt clusters on graphene,Phys. Rev. B 87(14), 144410 (2013)
https://doi.org/10.1103/PhysRevB.87.144410
|
37 |
J. L. Ge, T. R. Wu, M. Gao, Z. B. Bai, L. Cao, X. F. Wang, Y. Y. Qin, and F. Q. Song, Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction, Front. Phys. 12(4), 127210 (2017)
https://doi.org/10.1007/s11467-017-0677-7
|
38 |
S. F. Qi, H. Chen, X. H. Xu, and Z. Y. Zhang, Diluted ferromagnetic graphene by compensated n–p codoping, Carbon 61, 609 (2013)
https://doi.org/10.1016/j.carbon.2013.05.044
|
39 |
X. Y. Zhang, S. F. Qi, and X. H. Xu, Long-range and strong ferromagnetic graphene by compensated n–p codoping and p–p stacking, Carbon 95, 65 (2015)
https://doi.org/10.1016/j.carbon.2015.07.094
|
40 |
R. Zhang, Y. Luo, S. Qi, and X. Xu, Long-range ferromagnetic graphene via compensated Fe/NO2 co-doping, Appl. Surf. Sci. 305, 768 (2014)
https://doi.org/10.1016/j.apsusc.2014.03.195
|
41 |
X. Z. Deng, S. F. Qi, Y. L. Han, K. H. Zhang, X. H. Xu, and Z. H. Qiao, Realization of quantum anomalous Hall effect in graphene from n–p codoping-induced stable atomic adsorption, Phys. Rev. B 95(12), 121410 (2017)
https://doi.org/10.1103/PhysRevB.95.121410
|
42 |
T. Yamamoto, H. Katayama, and Yoshida, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys. 38(Part 2, No. 2B), L166 (1999)
|
43 |
L. G. Wang and A. Zunger, Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO, Phys. Rev. Lett. 90(25), 256401 (2003)
https://doi.org/10.1103/PhysRevLett.90.256401
|
44 |
Y. Gai, J. B. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
https://doi.org/10.1103/PhysRevLett.102.036402
|
45 |
W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. H. Weitering, G. Gu, Eres, and Z. Y. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.103.226401
|
46 |
X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature, New J. Phys. 8(8), 135 (2006)
https://doi.org/10.1088/1367-2630/8/8/135
|
47 |
W. G. Zhu, Z. Y. Zhang, and E. Kaxiras, Dopantassisted concentration enhancement of substitutional Mn in Si and Ge, Phys. Rev. Lett. 100(2), 027205 (2008)
https://doi.org/10.1103/PhysRevLett.100.027205
|
48 |
S. Agnoli and M. Favaro, Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A 4(14), 5002 (2016)
https://doi.org/10.1039/C5TA10599D
|
49 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
50 |
G. Kresse and J. Hafner, Ab initiomoleculardynamics simulation of the liquid-metal–amorphoussemiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
https://doi.org/10.1103/PhysRevB.49.14251
|
51 |
Y. G. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. S. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
https://doi.org/10.1103/PhysRevLett.92.037204
|
52 |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
|
53 |
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
|
54 |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
55 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
56 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
https://doi.org/10.1103/PhysRevLett.78.1396
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|