Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 137308    https://doi.org/10.1007/s11467-018-0806-y
RAPID COMMUNICATION
Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms
Xinzhou Deng1,2, Hualing Yang3, Shifei Qi1,3(), Xiaohong Xu3, Zhenhua Qiao1,2()
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
2. CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
3. School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
 Download: PDF(13516 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in condensed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2Te3 but at an extremely low observational temperature, thereby limiting its potential application in dissipationless quantum electronics. By employing first-principles calculations, we study the electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a compensated np co-doping scheme. Our findings are as follows: i) The electrostatic attraction between the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their undesirable clustering. ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferromagnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba splitting energies in Re–B and Pt–B co-doped graphene systems can reach up to 158 and 85 meV, respectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling strength.

Keywords graphene      quantum anomalous Hall effect      spin-orbit coupling     
Corresponding Author(s): Shifei Qi,Zhenhua Qiao   
Issue Date: 29 June 2018
 Cite this article:   
Xinzhou Deng,Hualing Yang,Shifei Qi, et al. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0806-y
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/137308
1 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
2 H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Quantum anomalous Hall effect and related topological electronic states, Adv. Phys. 64(3), 227 (2015)
https://doi.org/10.1080/00018732.2015.1068524
3 Y. F. Ren, Z. H. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys. 79(6), 066501 (2016)
https://doi.org/10.1088/0034-4885/79/6/066501
4 C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)
https://doi.org/10.1146/annurev-conmatphys-031115-011417
5 C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Quantum anomalous Hall effect in Hg1−yMny Te quantum wells, Phys. Rev. Lett. 101(14), 146802 (2008)
https://doi.org/10.1103/PhysRevLett.101.146802
6 R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
7 M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109(5), 055502 (2012)
https://doi.org/10.1103/PhysRevLett.109.055502
8 J. Y. Zhang, B. Zhao, and Z. Q. Yang, Abundant topological states in silicene with transition metal adatoms, Phys. Rev. B 88(16), 165422 (2013)
https://doi.org/10.1103/PhysRevB.88.165422
9 X. L. Zhang, L. F. Liu, and W. M. Liu, Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene, Sci. Rep. 3(1), 2908 (2013)
https://doi.org/10.1038/srep02908
10 M. Yang, X. L. Zhang, and W. M. Liu, Tunable topological quantum states in three- and two-dimensional materials, Front. Phys. 10(2), 108102 (2015)
https://doi.org/10.1007/s11467-015-0463-3
11 C. C. Liu, J. J. Zhou, and Y. G. Yao, Valley-polarized quantum anomalous Hall phases and tunable topological phase transitions in half-hydrogenated Bi honeycomb monolayers, Phys. Rev. B 91(16), 165430 (2015)
https://doi.org/10.1103/PhysRevB.91.165430
12 Z. H. Qiao, S. Y. Yang, W. X. Feng, W.-K. Tse, J. Ding, Y. G. Yao, J. Wang, and Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Phys. Rev. B 82, 161414(R) (2010)
13 Z. H. Qiao, H. Jiang, X. Li, Y. G. Yao, and Q. Niu, Microscopic theory of quantum anomalous Hall effect in graphene, Phys. Rev. B 85(11), 115439 (2012)
https://doi.org/10.1103/PhysRevB.85.115439
14 J. Ding, Z. H. Qiao, W. X. Feng, Y. G. Yao, and Q. Niu, Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initiostudy, Phys. Rev. B 84(19), 195444 (2011)
https://doi.org/10.1103/PhysRevB.84.195444
15 H. B. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms, Phys. Rev. Lett. 108(5), 056802 (2012)
https://doi.org/10.1103/PhysRevLett.108.056802
16 Z. H. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Y. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
https://doi.org/10.1103/PhysRevLett.112.116404
17 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
18 L. J. Yin, K. K. Bai, W. X. Wang, S. Y. Li, Y. Zhang, and L. He, Landau quantization of Dirac fermions in graphene and its multilayers, Front. Phys. 12(4), 127208 (2017)
https://doi.org/10.1007/s11467-017-0655-0
19 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
20 Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S. Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3, Phys. Rev. B 81(19), 195203 (2010)
https://doi.org/10.1103/PhysRevB.81.195203
21 C. Niu, Y. Dai, M. Guo, W. Wei, Y. Ma, and B. Huang, Mn induced ferromagnetism and modulated topological surface states in Bi2Te3, Appl. Phys. Lett. 98(25), 252502 (2011)
https://doi.org/10.1063/1.3601020
22 P. P. J. Haazen, J. B. Laloë, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3, Appl. Phys. Lett. 100(8), 082404 (2012)
https://doi.org/10.1063/1.3688043
23 T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78(3), 809 (2006)
https://doi.org/10.1103/RevModPhys.78.809
24 C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
25 J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator, Nat. Phys. 10(10), 731 (2014)
26 X. Kou, S. T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T. K. Lee, W. L. Lee, and K. L. Wang, Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit, Phys. Rev. Lett. 113(13), 137201 (2014)
https://doi.org/10.1103/PhysRevLett.113.137201
27 C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater. 14(5), 473 (2015)
https://doi.org/10.1038/nmat4204
28 S. F. Qi, Z. H. Qiao, X. Z. Deng, E. D. Cubuk, H. Chen, W. G. Zhu, E. Kaxiras, S. B. Zhang, X. H. Xu, and Z. Y. Zhang, High-temperature quantum anomalous Hall effect in n–p codoped topological insulators, Phys. Rev. Lett. 117(5), 056804 (2016)
https://doi.org/10.1103/PhysRevLett.117.056804
29 Y. Ou, C. Liu, G. Y. Jiang, Y. Feng, D. Y. Zhao, W. X. Wu, X. X. Wang, W. Li, C. L. Song, L. L. Wang, W. B. Wang, W. D. Wu, Y. Y. Wang, K. He, X. C. Ma, and Q. K. Xue, Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator, Adv. Mater. 30(1), 1703062 (2018)
https://doi.org/10.1002/adma.201703062
30 Y. G. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spin-orbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007)
https://doi.org/10.1103/PhysRevB.75.041401
31 M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
https://doi.org/10.1103/PhysRevB.80.235431
32 A. H. Castro Neto and F. Guinea, Impurity-induced spin-orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
https://doi.org/10.1103/PhysRevLett.103.026804
33 J. Hu, J. Alicea, R. Q. Wu, and M. Franz, Giant topological insulator gap in graphene with 5 d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
https://doi.org/10.1103/PhysRevLett.109.266801
34 H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
https://doi.org/10.1103/PhysRevLett.109.116803
35 T. Eelbo, M. Waśniowska, P. Thakur, M. Gyamfi, B. Sachs, T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein, and R. Wiesendanger, Adatoms and clusters of 3 d transition metals on graphene: Electronic and magnetic configurations, Phys. Rev. Lett. 110(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.110.136804
36 H. Chen, Q. Niu, Z. Y. Zhang, and A. H. MacDonald, Gate-tunable exchange coupling between cobalt clusters on graphene,Phys. Rev. B 87(14), 144410 (2013)
https://doi.org/10.1103/PhysRevB.87.144410
37 J. L. Ge, T. R. Wu, M. Gao, Z. B. Bai, L. Cao, X. F. Wang, Y. Y. Qin, and F. Q. Song, Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction, Front. Phys. 12(4), 127210 (2017)
https://doi.org/10.1007/s11467-017-0677-7
38 S. F. Qi, H. Chen, X. H. Xu, and Z. Y. Zhang, Diluted ferromagnetic graphene by compensated n–p codoping, Carbon 61, 609 (2013)
https://doi.org/10.1016/j.carbon.2013.05.044
39 X. Y. Zhang, S. F. Qi, and X. H. Xu, Long-range and strong ferromagnetic graphene by compensated n–p codoping and p–p stacking, Carbon 95, 65 (2015)
https://doi.org/10.1016/j.carbon.2015.07.094
40 R. Zhang, Y. Luo, S. Qi, and X. Xu, Long-range ferromagnetic graphene via compensated Fe/NO2 co-doping, Appl. Surf. Sci. 305, 768 (2014)
https://doi.org/10.1016/j.apsusc.2014.03.195
41 X. Z. Deng, S. F. Qi, Y. L. Han, K. H. Zhang, X. H. Xu, and Z. H. Qiao, Realization of quantum anomalous Hall effect in graphene from n–p codoping-induced stable atomic adsorption, Phys. Rev. B 95(12), 121410 (2017)
https://doi.org/10.1103/PhysRevB.95.121410
42 T. Yamamoto, H. Katayama, and Yoshida, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys. 38(Part 2, No. 2B), L166 (1999)
43 L. G. Wang and A. Zunger, Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO, Phys. Rev. Lett. 90(25), 256401 (2003)
https://doi.org/10.1103/PhysRevLett.90.256401
44 Y. Gai, J. B. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
https://doi.org/10.1103/PhysRevLett.102.036402
45 W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. H. Weitering, G. Gu, Eres, and Z. Y. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.103.226401
46 X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature, New J. Phys. 8(8), 135 (2006)
https://doi.org/10.1088/1367-2630/8/8/135
47 W. G. Zhu, Z. Y. Zhang, and E. Kaxiras, Dopantassisted concentration enhancement of substitutional Mn in Si and Ge, Phys. Rev. Lett. 100(2), 027205 (2008)
https://doi.org/10.1103/PhysRevLett.100.027205
48 S. Agnoli and M. Favaro, Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A 4(14), 5002 (2016)
https://doi.org/10.1039/C5TA10599D
49 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
50 G. Kresse and J. Hafner, Ab initiomoleculardynamics simulation of the liquid-metal–amorphoussemiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
https://doi.org/10.1103/PhysRevB.49.14251
51 Y. G. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. S. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
https://doi.org/10.1103/PhysRevLett.92.037204
52 D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
53 G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
54 G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
55 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
56 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
https://doi.org/10.1103/PhysRevLett.78.1396
[1] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[2] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[3] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[4] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[5] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[6] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[7] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
[8] Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity[J]. Front. Phys. , 2018, 13(4): 130311-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[11] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[12] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[13] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[14] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[15] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed