Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 130316    https://doi.org/10.1007/s11467-018-0821-z
RESEARCH ARTICLE
Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling
Yong-Kai Liu1(), Hong-Xia Yue1, Liang-Liang Xu2, Shi-Jie Yang2()
1. College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
2. Department of Physics, Beijing Normal University, Beijing 100875, China
 Download: PDF(4024 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three types of vortex-pair are identified in two-component Bose–Einstein condensates (BEC) of different kinds of spin-orbit coupling. One type holds the two vortices in one component of the twocomponent condensates. Both the other two types hold a vortex in each component of the twocomponent condensates, and exhibit meron-pair textures that have either null or unit topological charge, respectively. The cores of the two vortices are connected by a string of the relative phase jump. These vortex pairs can be generated from a vortex-free wave packet by incorporating different non- Abelian gauge field into the BEC. When a Rabi coupling is introduced, the distance between the two cores is effectively controlled by the Rabi coupling strength and a transition of vortex configurations is observed.

Keywords Bose–Einstein condensates      spin-orbit coupling      vortex-pair states     
Corresponding Author(s): Yong-Kai Liu,Shi-Jie Yang   
Issue Date: 06 August 2018
 Cite this article:   
Yong-Kai Liu,Hong-Xia Yue,Liang-Liang Xu, et al. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0821-z
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/130316
1 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
https://doi.org/10.1103/PhysRevLett.48.1559
2 I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
https://doi.org/10.1103/RevModPhys.76.323
3 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
4 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
5 F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
6 X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
7 Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
8 S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin- 1 Bose–Einstein condensates,Front. Phys. 8(3), 302 (2013)
https://doi.org/10.1007/s11467-013-0350-8
9 Y. Li and J. K. Xue, Stationary and moving solitons in spin-orbit-coupled spin-1 Bose–Einstein condensates, Front. Phys. 13(2), 130307 (2018)
https://doi.org/10.1007/s11467-017-0732-4
10 L. Huang, Z. Meng, P. Wang, P. Peng, S. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases, Nat. Phys. 12(6), 540 (2016)
11 Z. Wu, L. Zhang, W. Sun, X. Xu, B. Wang, S. Ji, Y. Deng, S. Chen, X. Liu, and J. Pan, Realization of twodimensional spin-orbit coupling for Bose–Einstein condensates, Science 354(6308), 83 (2016)
https://doi.org/10.1126/science.aaf6689
12 W. Sun, B. Wang, X. Xu, C. Yi, L. Zhang, Z. Wu, Y. Deng, X. Liu, S. Chen, and J. Pan, Long-lived 2D Spin- Orbit coupled Topological Bose Gas, arXiv: 1710.00717 (2017)
13 S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin-orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011)
https://doi.org/10.1103/PhysRevLett.107.270401
14 H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Spinorbit coupled weakly interacting Bose–Einstein condensates in harmonic traps, Phys. Rev. Lett. 108(1), 010402 (2012)
https://doi.org/10.1103/PhysRevLett.108.010402
15 B. Ramachandhran, B. Opanchuk, X. J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-quantum vortex state in a spin-orbit-coupled Bose–Einstein condensate, Phys. Rev. A 85(2), 023606 (2012)
https://doi.org/10.1103/PhysRevA.85.023606
16 C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin-orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)
https://doi.org/10.1103/PhysRevLett.105.160403
17 X. Zhou, Y. Li, Z. Cai, and C. Wu, Unconventional states of bosons with the synthetic spin-orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134001 (2013)
https://doi.org/10.1088/0953-4075/46/13/134001
18 Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates, Phys. Rep. 520(5), 253 (2012)
https://doi.org/10.1016/j.physrep.2012.07.005
19 H. Mäkelä, Explicit expressions for the topological defects of spinor Bose–Einstein condensates,J. Phys. Math. Gen. 39(23), 7423 (2006)
https://doi.org/10.1088/0305-4470/39/23/017
20 K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Wall-vortex composite solitons in two-component Bose– Einstein condensates, Phys. Rev. A 88(1), 013620 (2013)
https://doi.org/10.1103/PhysRevA.88.013620
21 T. A. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31, 556 (1962)
https://doi.org/10.1016/0029-5582(62)90775-7
22 Y. M. Cho, Monopoles and knots in Skyrme theory, Phys. Rev. Lett. 87(25), 252001 (2001)
https://doi.org/10.1103/PhysRevLett.87.252001
23 S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies, Phys. Rev. B 47(24), 16419 (1993)
https://doi.org/10.1103/PhysRevB.47.16419
24 N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341(6146), 636 (2013)
https://doi.org/10.1126/science.1240573
25 Y. Kawaguchi, M. Kobayashi, M. Nitta, and M. Ueda, Topological excitations in spinor Bose–Einstein condensates, Prog. Theor. Phys. Suppl. 186, 455 (2010)
https://doi.org/10.1143/PTPS.186.455
26 K. Kasamatsu, M. Tsubota, and M. Ueda, Spin textures in rotating two-component Bose–Einstein condensates, Phys. Rev. A 71(4), 043611 (2005)
https://doi.org/10.1103/PhysRevA.71.043611
27 K. Kasamatsu, M. Tsubota, and M. Ueda, Vortex molecules in coherently coupled two-component Bose– Einstein condensates, Phys. Rev. Lett. 93(25), 250406 (2004)
https://doi.org/10.1103/PhysRevLett.93.250406
28 T. D. Stanescu, C. Zhang, and V. Galitski, Nonequilibrium spin dynamics in a trapped fermi gas with effective spin-orbit interactions, Phys. Rev. Lett. 99(11), 110403 (2007)
https://doi.org/10.1103/PhysRevLett.99.110403
29 J. Ruseckas, G. Juzeliunas, P. Ohberg, and M. Fleischhauer, Non-Abelian gauge potentials for ultracold atoms with degenerate dark states, Phys. Rev. Lett. 95(1), 010404 (2005)
https://doi.org/10.1103/PhysRevLett.95.010404
30 T. Stanescu, B. Anderson, and V. Galitski, Spin-orbit coupled Bose–Einstein condensates, Phys. Rev. A 78(2), 023616 (2008)
https://doi.org/10.1103/PhysRevA.78.023616
31 J. Radić, T. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011)
https://doi.org/10.1103/PhysRevA.84.063604
32 K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Wall-vortex composite solitons in two-component Bose– Einstein condensates, Phys. Rev. A 88(1), 013620 (2013)
https://doi.org/10.1103/PhysRevA.88.013620
33 H. Wang, L. Wen, H. Yang, C. Shi, and J. Li, Vortex states and spin textures of rotating spin-orbit-coupled Bose–Einstein condensates in a toroidal trap, J. Phys. At. Mol. Opt. Phys. 50(15), 155301 (2017)
https://doi.org/10.1088/1361-6455/aa7afd
34 W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation, J. Comput. Phys. 187(1), 318 (2003)
https://doi.org/10.1016/S0021-9991(03)00102-5
35 W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates, J. Comput. Phys. 217(2), 612 (2006)
https://doi.org/10.1016/j.jcp.2006.01.020
36 T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose– Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012)
https://doi.org/10.1103/PhysRevLett.109.015301
37 T. Kawakami, T. Mizushima, and K. Machida, Textures of F= 2 spinor Bose–Einstein condensates with spinorbit coupling, Phys. Rev. A 84, 011607(R) (2011)
38 Y. K. Liu and S. J. Yang, Three-dimensional dimeron as a stable topological object, Phys. Rev. A 91(4), 043616 (2015)
https://doi.org/10.1103/PhysRevA.91.043616
39 M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M. J. Holland, J. E. Williams, C. E. Wieman, and E. A. Cornell, Watching a superfluid untwist itself: Recurrence of Rabi oscillations in a Bose–Einstein condensate, Phys. Rev. Lett. 83(17), 3358 (1999)
https://doi.org/10.1103/PhysRevLett.83.3358
[1] Jin-Cheng Shi, Jian-Hua Zeng. Self-trapped spatially localized states in combined linear-nonlinear periodic potentials[J]. Front. Phys. , 2020, 15(1): 12602-.
[2] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[3] Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity[J]. Front. Phys. , 2018, 13(4): 130311-.
[4] SHAO Peng-rui, SHAO Peng-rui, DENG Wen-ji, DENG Wen-ji. Electronic double refraction due to the Rashba effect: Analytical and numerical results[J]. Front. Phys. , 2007, 2(1): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed