Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (1) : 13606    https://doi.org/10.1007/s11467-018-0851-6
RESEARCH ARTICLE
Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals
T. Latychevskaia1, C. R. Woods2,3, Yi Bo Wang2,3, M. Holwill2,3, E. Prestat2,3, S. J. Haigh2,3, K. S. Novoselov2,3()
1. Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2. National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
3. School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
4. School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
 Download: PDF(20930 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Van der Waals heterostructures have been lately intensively studied because they offer a large variety of properties that can be controlled by selecting 2D materials and their sequence in the stack. The exact arrangement of the layers as well as the exact arrangement of the atoms within the layers, both are important for the properties of the resulting device. However, it is very difficult to control and characterize the exact position of the atoms and the layers in such heterostructures, in particular, along the vertical (z) dimension. Recently it has been demonstrated that convergent beam electron diffraction (CBED) allows quantitative three-dimensional mapping of atomic positions in three-dimensional materials from a single CBED pattern. In this study we investigate CBED in more detail by simulating and performing various CBED regimes, with convergent and divergent wavefronts, on a somewhat simplified system: a two-dimensional (2D) monolayer crystal. In CBED, each CBED spot is in fact an in-line hologram of the sample, where in-line holography is known to exhibit high intensity contrast in detection of weak phase objects that are not detectable in conventional in-focus imaging mode. Adsorbates exhibit strong intensity contrast in the zero and higher order CBED spots, whereas lattice deformation such as strain or rippling cause noticeable intensity contrast only in the first and higher order CBED spots. The individual CBED spots can thus be reconstructed as typical in-line holograms, and a resolution of 2.13 Å can in principle be achieved in the reconstructions. We provide simulated and experimental examples of CBED of a 2D monolayer crystal. The simulations show that individual CBED spots can be treated as in-line holograms and sample distributions such as adsorbates, can be reconstructed. Individual atoms can be reconstructed from a single CBED pattern provided the later exhibits high-order CBED spots. The experimental results were obtained in a transmission electron microscope (TEM) at 80 keV on free-standing monolayer hBN containing adsorbates. Examples of reconstructions obtained from experimental CBED patterns at a resolution of 2.7 Å are shown. CBED technique can be potentially useful for imaging individual biological macromolecules, because it provides a relatively high resolution and does not require additional scanning procedure or multiple image acquisitions and therefore allows minimizing the radiation damage.

Keywords graphene      two-dimensional materials      van der Waals structures      electron holography      convergent beam electron diffraction     
Corresponding Author(s): K. S. Novoselov   
Issue Date: 01 January 2019
 Cite this article:   
T. Latychevskaia,C. R. Woods,Yi Bo Wang, et al. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0851-6
https://academic.hep.com.cn/fop/EN/Y2019/V14/I1/13606
1 W. Kossel and G. Möllenstedt, Elektroneninterferenzen im konvergenten Bündel, Ann. Phys. 428(2), 113 (1939)
https://doi.org/10.1002/andp.19394280204
2 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl, On the roughness of single- and bi-layer graphene membranes, Solid State Commun. 143(1–2), 101 (2007)
https://doi.org/10.1016/j.ssc.2007.02.047
3 T. Latychevskaia, W. H. Hsu, W. T. Chang, C. Y. Lin, and I. S. Hwang, Three-dimensional surface topography of graphene by divergent beam electron diffraction, Nat. Commun. 8, 14440 (2017)
https://doi.org/10.1038/ncomms14440
4 T. Latychevskaia, C. R. Woods, Y. B. Wang, M. Holwill, E. Prestat, S. J. Haigh, and K. S. Novoselov, Convergent beam electron holography for analysis of van der Waals heterostructures, Proc. Natl. Acad. Sci. USA 115(29), 7473 (2018)
https://doi.org/10.1073/pnas.1722523115
5 P. M. Kelly, A. Jostsons, R. G. Blake, and J. G. Napier, The determination of foil thickness by scanning transmission electron microscopy, Phys. Status Solidi A Appl. Res. 31(2), 771 (1975)
https://doi.org/10.1002/pssa.2210310251
6 P. Goodman, A practical method of three-dimensional space-group analysis using convergent-beam electron diffraction, Acta Crystallogr. A 31(6), 804 (1975)
https://doi.org/10.1107/S0567739475001738
7 B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, The symmetry of electron diffraction zone axis patterns, Philos. Trans. Royal Soc. A 281(1301), 171 (1976)
https://doi.org/10.1098/rsta.1976.0024
8 P. M. Jones, G. M. Rackham, and J. W. Steeds, Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination, Proc. R. Soc. London Ser. A 354 (1677), 197 (1977)
9 J. C. H. Spence and J. M. Zuo, Electron Microdiffraction, Plenum Press, 1992
https://doi.org/10.1007/978-1-4899-2353-0
10 J. M. Zuo and J. C. H. Spence, Advanced Transmission Electron Microscopy, Springer, 2017
https://doi.org/10.1007/978-1-4939-6607-3
11 L. J. Wu, Y. M. Zhu, and J. Tafto, Picometer accuracy in measuring lattice displacements across planar faults by interferometry in coherent electron diffraction, Phys. Rev. Lett. 85(24), 5126 (2000)
https://doi.org/10.1103/PhysRevLett.85.5126
12 L. J. Wu, Y. M. Zhu, J. Tafto, D. O. Welch, and M. Suenaga, Quantitative analysis of twist boundaries and stacking faults in Bi-based superconductors by parallel recording of dark-field images with a coherent electron source, Phys. Rev. B 66(10), 104517 (2002)
https://doi.org/10.1103/PhysRevB.66.104517
13 T. Latychevskaia, J. N. Longchamp, and H. W. Fink, When holography meets coherent diffraction imaging, Opt. Express 20(27), 28871 (2012)
https://doi.org/10.1364/OE.20.028871
14 D. Gabor, A new microscopic principle, Nature 161(4098), 777 (1948)
https://doi.org/10.1038/161777a0
15 D. Gabor, Microscopy by reconstructed wave-fronts, Proc. R. Soc. Lond. A 197(1051), 454 (1949)
https://doi.org/10.1098/rspa.1949.0075
16 E. J. Kirkland, Advanced Computing in Electron Microscopy, Springer, 2010
https://doi.org/10.1007/978-1-4419-6533-2
17 J. J. Barton, Photoelectron holography, Phys. Rev. Lett. 61(12), 1356 (1988)
https://doi.org/10.1103/PhysRevLett.61.1356
18 T. Latychevskaia and H. W. Fink, Practical algorithms for simulation and reconstruction of digital in-line holograms, Appl. Opt. 54(9), 2424 (2015)
https://doi.org/10.1364/AO.54.002424
19 T. Latychevskaia and H. W. Fink, Simultaneous reconstruction of phase and amplitude contrast from a single holographic record, Opt. Express 17(13), 10697 (2009)
https://doi.org/10.1364/OE.17.010697
20 T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, Off-axis and inline electron holography: Experimental comparison, Ultramicroscopy 110(5), 472 (2010)
https://doi.org/10.1016/j.ultramic.2009.12.007
21 T. Latychevskaia and H. W. Fink, Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms, Appl. Opt. 54(13), 3925 (2015)
https://doi.org/10.1364/AO.54.003925
22 T. Matsumoto, T. Tanji, and A. Tonomura, Visualization of DNA in solution by Fraunhofer in-line electron holography (II): Experiments, Optik 100(2), 71 (1995)
23 R. R. Nair, P. Blake, J. R. Blake, R. Zan, S. Anissimova, U. Bangert, A. P. Golovanov, S. V. Morozov, A. K. Geim, K. S. Novoselov, and T. Latychevskaia, Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy, Appl. Phys. Lett. 97(15), 153102 (2010)
https://doi.org/10.1063/1.3492845
24 H. Adaniya, M. Cheung, C. Cassidy, M. Yamashita, and T. Shintake, Development of a SEM-based low-energy inline electron holography microscope for individual particle imaging, Ultramicroscopy 188, 31 (2018)
https://doi.org/10.1016/j.ultramic.2018.03.002
25 R. S. Pantelic, J. C. Meyer, U. Kaiser, W. Baumeister, and J. M. Plitzko, Graphene oxide: A substrate for optimizing preparations of frozen-hydrated samples, J. Struct. Biol. 170(1), 152 (2010)
https://doi.org/10.1016/j.jsb.2009.12.020
26 A. Thust, W. M. J. Coene, M. Op de Beeck, and D. Van Dyck, Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects, Ultramicroscopy 64(1–4), 211 (1996)
https://doi.org/10.1016/0304-3991(96)00011-3
27 M. A. Dyson, A. M. Sanchez, J. P. Patterson, R. K. O’Reilly, J. Sloan, and N. R. Wilson, A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies, Soft Matter 9(14), 3741 (2013)
https://doi.org/10.1039/c3sm27787a
[1] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[2] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[3] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[4] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[5] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[6] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[7] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[8] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[11] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[12] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[13] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[14] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[15] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed