|
|
The unique carrier mobility of Janus MoSSe/GaN heterostructures |
Wen-Jin Yin1, Xiao-Long Zeng1, Bo Wen2, Qing-Xia Ge1, Ying Xu1, Gilberto Teobaldi3,4,5, Li-Min Liu2( ) |
1. 1School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China 2. 2School of Physics, Beihang University, Beijing 100083, China 3. 3Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX Didcot, United Kingdom 4. 4Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, L69 3BX Liverpool, United Kingdom 5. 5School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom |
|
|
Abstract Heterostructure is an effective approach in modulating the physical and chemical behavior of materials. Here, the first-principles calculations were carried out to explore the structural, electronic, and carrier mobility properties of Janus MoSSe/GaN heterostructures. This heterostructure exhibits a superior high carrier mobility of 281.28 cm2·V−1·s−1 for electron carrier and 3951.2 cm2·V−1·s−1 for hole carrier. Particularly, the magnitude of the carrier mobility can be further tuned by Janus structure and stacking modes of the heterostructure. It is revealed that the equivalent mass and elastic moduli strongly affect the carrier mobility of the heterostructure, while the deformation potential contributes to the different carrier mobility for electron and hole of the heterostructure. These results suggest that the Janus MoSSe/GaN heterostructures have many potential applications for the unique carrier mobility.
|
Keywords
Janus heterostructure
carrier mobility
first-principles calculation
|
Corresponding Author(s):
Li-Min Liu
|
Just Accepted Date: 20 October 2020
Issue Date: 19 November 2020
|
|
1 |
Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Ultrahard carbon film from epitaxial two-layer graphene, Nat. Nanotechnol. 13(2), 133 (2018)
https://doi.org/10.1038/s41565-017-0023-9
|
2 |
C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9), 6225 (2017)
https://doi.org/10.1021/acs.chemrev.6b00558
|
3 |
W. J. Yin, B. Wen, C. Zhou, A. Selloni, and L. M. Liu, Excess electrons in reduced rutile and anatase TiO2, Surf. Sci. Rep. 73(2), 58 (2018)
https://doi.org/10.1016/j.surfrep.2018.02.003
|
4 |
M. Wang, Y. Pang, D. Y. Liu, S. H. Zheng, and Q. L. Song, Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons, Comput. Mater. Sci. 146, 240 (2018)
https://doi.org/10.1016/j.commatsci.2018.01.044
|
5 |
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
|
6 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
7 |
C. Lin, D. Shin, and A. A. Demkov, Localized states induced by an oxygen vacancy in rutile TiO2, J. Appl. Phys. 117(22), 225703 (2015)
https://doi.org/10.1063/1.4922184
|
8 |
Z. K. Han, Y. Z. Yang, B. Zhu, M. V. Ganduglia-Pirovano, and Y. Gao, Unraveling the oxygen vacancy structures at the reduced CeO2 (111) surface, Phys. Rev. Mater. 2(3), 035802 (2018)
https://doi.org/10.1103/PhysRevMaterials.2.035802
|
9 |
T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids 63(10), 1909 (2002)
https://doi.org/10.1016/S0022-3697(02)00177-4
|
10 |
H. C. Yang, Y. Xie, J. Hou, A. K. Cheetham, V. Chen, and S. B. Darling, Janus membranes: Creating asymmetry for energy efficiency, Adv. Mater. 30(43), 1801495 (2018)
https://doi.org/10.1002/adma.201801495
|
11 |
H. Zhang, Y.N. Zhang, H. Liu, and L.M. Liu, Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion, J. Mater. Chem. A 2(37), 15389 (2014)
https://doi.org/10.1039/C4TA03134B
|
12 |
Y. Gong, H. Yuan, C. L. Wu, P. Tang, S. Z. Yang, A. Yang, G. Li, B. Liu, J. van de Groep, M. L. Brongersma, M. F. Chisholm, S. C. Zhang, W. Zhou, and Y. Cui, Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics, Nat. Nanotechnol. 13(4), 294 (2018)
https://doi.org/10.1038/s41565-018-0069-3
|
13 |
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
|
14 |
C. Ataca, H. Şahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116(16), 8983 (2012)
https://doi.org/10.1021/jp212558p
|
15 |
Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc. 134(15), 6575 (2012)
https://doi.org/10.1021/ja302846n
|
16 |
B. Radisavljevic and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2, Nat. Mater. 12(9), 815 (2013)
https://doi.org/10.1038/nmat3687
|
17 |
W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors ( M= Mo, W; X= S, Se, Te), Phys. Rev. B 85(3), 033305 (2012)
https://doi.org/10.1103/PhysRevB.85.033305
|
18 |
S. Fathipour, N. Ma, W. S. Hwang, V. Protasenko, S. Vishwanath, H. G. Xing, H. Xu, D. Jena, J. Appenzeller, and A. Seabaugh, Exfoliated multilayer MoTe2 field-effect transistors, Appl. Phys. Lett. 105(19), 192101 (2014)
https://doi.org/10.1063/1.4901527
|
19 |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotech. 6, 147 (2011)
https://doi.org/10.1038/nnano.2010.279
|
20 |
Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(I) sulfide: A twodimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horizons 4(1), 223 (2019)
https://doi.org/10.1039/C8NH00216A
|
21 |
Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horizons 4(3), 592 (2019)
https://doi.org/10.1039/C8NH00273H
|
22 |
G. Mattioli, F. Filippone, P. Alippi, and A. Amore Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase, Phys. Rev. B 78, 241201(R) (2008)
https://doi.org/10.1103/PhysRevB.78.241201
|
23 |
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.C. Idrobo, P. M. Ajayan, and J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mater. 12(8), 754 (2013)
https://doi.org/10.1038/nmat3673
|
24 |
X. Ma, X. Wu, H. Wang, and Y. Wang, A Janus MoSSe monolayer: A potential wide solar-spectrum watersplitting photocatalyst with a low carrier recombination rate, J. Mater. Chem. A 6(5), 2295 (2018)
https://doi.org/10.1039/C7TA10015A
|
25 |
R. Chaurasiya and A. Dixit, Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing, Appl. Surf. Sci. 490, 204 (2019)
https://doi.org/10.1016/j.apsusc.2019.06.049
|
26 |
Y. Cai, G. Zhang, and Y. W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136(17), 6269 (2014)
https://doi.org/10.1021/ja4109787
|
27 |
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M.Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
https://doi.org/10.1038/nnano.2017.100
|
28 |
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
https://doi.org/10.1021/acsnano.7b03186
|
29 |
R. Peng, Y. Ma, S. Zhang, B. Huang, and Y. Dai, Valley polarization in janus single-layer MoSSe via magnetic doping, J. Phys. Chem. Lett. 9(13), 3612 (2018)
https://doi.org/10.1021/acs.jpclett.8b01625
|
30 |
W. J. Yin, B. Wen, G. Z. Nie, X. L. Wei, and L. M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure, J. Mater. Chem. C 6(7), 1693 (2018)
https://doi.org/10.1039/C7TC05225A
|
31 |
H. C. Yang, J. Hou, V. Chen, and Z. K. Xu, Janus membranes: Exploring duality for advanced separation, Angew. Chem. Int. Ed. Engl. 55(43), 13398 (2016)
https://doi.org/10.1002/anie.201601589
|
32 |
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)
https://doi.org/10.1063/1.4981877
|
33 |
L. Dong, J. Lou, and V. B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides, ACS Nano 11(8), 8242 (2017)
https://doi.org/10.1021/acsnano.7b03313
|
34 |
H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S. J. Li, Z. H. Wang, J. S. Liu, and X. C. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev. 43(15), 5234 (2014)
https://doi.org/10.1039/C4CS00126E
|
35 |
Y. Ding, J. Shi, C. Xia, M. Zhang, J. Du, P. Huang, M. Wu, H. Wang, Y. Cen, and S. Pan, Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure, Nanoscale 9(38), 14682 (2017)
https://doi.org/10.1039/C7NR02725G
|
36 |
F. B. Zheng, L. Zhang, J. Zhang, P. Wang, and C. W. Zhang, Germanene/GaGeTe heterostructure: A promising electric-field induced data storage device with high carrier mobility, Phys. Chem. Chem. Phys. 22(9), 5163 (2020)
https://doi.org/10.1039/C9CP06445A
|
37 |
Y. Yao, J. Cao, W. Yin, L. Yang, and X. Wei, A 2D ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: A first-principles study, J. Phys. D Appl. Phys. 53(5), 055108 (2020)
https://doi.org/10.1088/1361-6463/ab50a1
|
38 |
W. Li, Z. Lin, and G. Yang, A 2D self-assembled MoS2 /ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution, Nanoscale 9(46), 18290 (2017)
https://doi.org/10.1039/C7NR06755K
|
39 |
X. Sun, H. Deng, W. Zhu, Z. Yu, C. Wu, and Y. Xie, Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings, Angew. Chem. Int. Ed. Engl. 55(5), 1704 (2016)
https://doi.org/10.1002/anie.201508571
|
40 |
Z. Wei, F. F. Liang, Y. F. Liu, W. J. Luo, J. Wang, W. Q. Yao, and Y. F. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4hybrid heterostructure thin film, Appl. Catal. B 201, 600 (2017)
https://doi.org/10.1016/j.apcatb.2016.09.003
|
41 |
W. Yin, B. Wen, Q. Ge, D. Zou, Y. Xu, M. Liu, X. Wei, M. Chen, and X. Fan, Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study, Prog. Nat. Sci.: Mater. Inter. 29, 335 (2019)
https://doi.org/10.1016/j.pnsc.2019.05.003
|
42 |
W. Yin, B. Wen, Q. Ge, X. Wei, G. Teobaldi, and L. Liu, Effect of crystal field on the formation and diffusion of oxygen vacancy at anatase (101) surface and sub-surface, Prog. Nat. Sci.: Mater. Inter. 30(1), 128 (2020)
https://doi.org/10.1016/j.pnsc.2020.01.001
|
43 |
M. L. Sun, J. P. Chou, Q. Q. Ren, Y. M. Zhao, J. Yu, and W. C. Tang, Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN, Appl. Phys. Lett. 110(17), 173105 (2017)
https://doi.org/10.1063/1.4982690
|
44 |
L. Zhou, Y. Dai, J. Guo, R. Chen, Y. Xie, and W. Luo, Novel Ag3PO4/LaCo1−xBixO3 composite photocatalyst with enhanced photocatalytic degradation of BPA under visible light, Mater. Lett. 213, 387 (2018)
https://doi.org/10.1016/j.matlet.2017.10.123
|
45 |
Z. Y. Al Balushi, K. Wang, R. K. Ghosh, R. A. Vilá, S. M. Eichfeld, J. D. Caldwell, X. Qin, Y.C. Lin, P. A. DeSario, G. Stone, S. Subramanian, D. F. Paul, R. M. Wallace, S. Datta, J. M. Redwing, and J. A. Robinson, Two-dimensional gallium nitride realized via graphene encapsulation, Nat. Mater. 15(11), 1166 (2016)
https://doi.org/10.1038/nmat4742
|
46 |
Y. Zhao, H. Wang, H. Zhou, and T. Lin, Directional fluid transport in thin porous materials and its functional applications, Small 13(4), 1601070 (2017)
https://doi.org/10.1002/smll.201601070
|
47 |
X. Li, Z. Li, and J. Yang, Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light, Phys. Rev. Lett. 112(1), 018301 (2014)
https://doi.org/10.1103/PhysRevLett.112.018301
|
48 |
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
|
49 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set., Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
50 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
51 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
https://doi.org/10.1103/PhysRevLett.78.1396
|
52 |
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010)
https://doi.org/10.1063/1.3382344
|
53 |
X. B. Li, P. Guo, Y. N. Zhang, R. F. Peng, H. Zhang, and L. M. Liu, High carrier mobility of few-layer PbX (X= S, Se, Te), J. Mater. Chem. C 3(24), 6284 (2015)
https://doi.org/10.1039/C5TC00910C
|
54 |
S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boronnitride, Appl. Phys. Lett. 99(22), 222108 (2011)
https://doi.org/10.1063/1.3665183
|
55 |
C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin, Influence of an electric field on the optical properties of few-layer graphene with ABstacking, Phys. Rev. B 73(14), 144427 (2006)
https://doi.org/10.1103/PhysRevB.73.144427
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|