Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (3) : 33501    https://doi.org/10.1007/s11467-020-1021-1
RESEARCH ARTICLE
The unique carrier mobility of Janus MoSSe/GaN heterostructures
Wen-Jin Yin1, Xiao-Long Zeng1, Bo Wen2, Qing-Xia Ge1, Ying Xu1, Gilberto Teobaldi3,4,5, Li-Min Liu2()
1. 1School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
2. 2School of Physics, Beihang University, Beijing 100083, China
3. 3Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX Didcot, United Kingdom
4. 4Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, L69 3BX Liverpool, United Kingdom
5. 5School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
 Download: PDF(2869 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterostructure is an effective approach in modulating the physical and chemical behavior of materials. Here, the first-principles calculations were carried out to explore the structural, electronic, and carrier mobility properties of Janus MoSSe/GaN heterostructures. This heterostructure exhibits a superior high carrier mobility of 281.28 cm2·V−1·s−1 for electron carrier and 3951.2 cm2·V−1·s−1 for hole carrier. Particularly, the magnitude of the carrier mobility can be further tuned by Janus structure and stacking modes of the heterostructure. It is revealed that the equivalent mass and elastic moduli strongly affect the carrier mobility of the heterostructure, while the deformation potential contributes to the different carrier mobility for electron and hole of the heterostructure. These results suggest that the Janus MoSSe/GaN heterostructures have many potential applications for the unique carrier mobility.

Keywords Janus heterostructure      carrier mobility      first-principles calculation     
Corresponding Author(s): Li-Min Liu   
Just Accepted Date: 20 October 2020   Issue Date: 19 November 2020
 Cite this article:   
Wen-Jin Yin,Xiao-Long Zeng,Bo Wen, et al. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1021-1
https://academic.hep.com.cn/fop/EN/Y2021/V16/I3/33501
1 Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Ultrahard carbon film from epitaxial two-layer graphene, Nat. Nanotechnol. 13(2), 133 (2018)
https://doi.org/10.1038/s41565-017-0023-9
2 C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9), 6225 (2017)
https://doi.org/10.1021/acs.chemrev.6b00558
3 W. J. Yin, B. Wen, C. Zhou, A. Selloni, and L. M. Liu, Excess electrons in reduced rutile and anatase TiO2, Surf. Sci. Rep. 73(2), 58 (2018)
https://doi.org/10.1016/j.surfrep.2018.02.003
4 M. Wang, Y. Pang, D. Y. Liu, S. H. Zheng, and Q. L. Song, Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons, Comput. Mater. Sci. 146, 240 (2018)
https://doi.org/10.1016/j.commatsci.2018.01.044
5 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
6 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
7 C. Lin, D. Shin, and A. A. Demkov, Localized states induced by an oxygen vacancy in rutile TiO2, J. Appl. Phys. 117(22), 225703 (2015)
https://doi.org/10.1063/1.4922184
8 Z. K. Han, Y. Z. Yang, B. Zhu, M. V. Ganduglia-Pirovano, and Y. Gao, Unraveling the oxygen vacancy structures at the reduced CeO2 (111) surface, Phys. Rev. Mater. 2(3), 035802 (2018)
https://doi.org/10.1103/PhysRevMaterials.2.035802
9 T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids 63(10), 1909 (2002)
https://doi.org/10.1016/S0022-3697(02)00177-4
10 H. C. Yang, Y. Xie, J. Hou, A. K. Cheetham, V. Chen, and S. B. Darling, Janus membranes: Creating asymmetry for energy efficiency, Adv. Mater. 30(43), 1801495 (2018)
https://doi.org/10.1002/adma.201801495
11 H. Zhang, Y.N. Zhang, H. Liu, and L.M. Liu, Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion, J. Mater. Chem. A 2(37), 15389 (2014)
https://doi.org/10.1039/C4TA03134B
12 Y. Gong, H. Yuan, C. L. Wu, P. Tang, S. Z. Yang, A. Yang, G. Li, B. Liu, J. van de Groep, M. L. Brongersma, M. F. Chisholm, S. C. Zhang, W. Zhou, and Y. Cui, Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics, Nat. Nanotechnol. 13(4), 294 (2018)
https://doi.org/10.1038/s41565-018-0069-3
13 M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
14 C. Ataca, H. Şahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116(16), 8983 (2012)
https://doi.org/10.1021/jp212558p
15 Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc. 134(15), 6575 (2012)
https://doi.org/10.1021/ja302846n
16 B. Radisavljevic and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2, Nat. Mater. 12(9), 815 (2013)
https://doi.org/10.1038/nmat3687
17 W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors ( M= Mo, W; X= S, Se, Te), Phys. Rev. B 85(3), 033305 (2012)
https://doi.org/10.1103/PhysRevB.85.033305
18 S. Fathipour, N. Ma, W. S. Hwang, V. Protasenko, S. Vishwanath, H. G. Xing, H. Xu, D. Jena, J. Appenzeller, and A. Seabaugh, Exfoliated multilayer MoTe2 field-effect transistors, Appl. Phys. Lett. 105(19), 192101 (2014)
https://doi.org/10.1063/1.4901527
19 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotech. 6, 147 (2011)
https://doi.org/10.1038/nnano.2010.279
20 Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(I) sulfide: A twodimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horizons 4(1), 223 (2019)
https://doi.org/10.1039/C8NH00216A
21 Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horizons 4(3), 592 (2019)
https://doi.org/10.1039/C8NH00273H
22 G. Mattioli, F. Filippone, P. Alippi, and A. Amore Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase, Phys. Rev. B 78, 241201(R) (2008)
https://doi.org/10.1103/PhysRevB.78.241201
23 S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.C. Idrobo, P. M. Ajayan, and J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mater. 12(8), 754 (2013)
https://doi.org/10.1038/nmat3673
24 X. Ma, X. Wu, H. Wang, and Y. Wang, A Janus MoSSe monolayer: A potential wide solar-spectrum watersplitting photocatalyst with a low carrier recombination rate, J. Mater. Chem. A 6(5), 2295 (2018)
https://doi.org/10.1039/C7TA10015A
25 R. Chaurasiya and A. Dixit, Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing, Appl. Surf. Sci. 490, 204 (2019)
https://doi.org/10.1016/j.apsusc.2019.06.049
26 Y. Cai, G. Zhang, and Y. W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136(17), 6269 (2014)
https://doi.org/10.1021/ja4109787
27 A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M.Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
https://doi.org/10.1038/nnano.2017.100
28 J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
https://doi.org/10.1021/acsnano.7b03186
29 R. Peng, Y. Ma, S. Zhang, B. Huang, and Y. Dai, Valley polarization in janus single-layer MoSSe via magnetic doping, J. Phys. Chem. Lett. 9(13), 3612 (2018)
https://doi.org/10.1021/acs.jpclett.8b01625
30 W. J. Yin, B. Wen, G. Z. Nie, X. L. Wei, and L. M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure, J. Mater. Chem. C 6(7), 1693 (2018)
https://doi.org/10.1039/C7TC05225A
31 H. C. Yang, J. Hou, V. Chen, and Z. K. Xu, Janus membranes: Exploring duality for advanced separation, Angew. Chem. Int. Ed. Engl. 55(43), 13398 (2016)
https://doi.org/10.1002/anie.201601589
32 Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)
https://doi.org/10.1063/1.4981877
33 L. Dong, J. Lou, and V. B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides, ACS Nano 11(8), 8242 (2017)
https://doi.org/10.1021/acsnano.7b03313
34 H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S. J. Li, Z. H. Wang, J. S. Liu, and X. C. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev. 43(15), 5234 (2014)
https://doi.org/10.1039/C4CS00126E
35 Y. Ding, J. Shi, C. Xia, M. Zhang, J. Du, P. Huang, M. Wu, H. Wang, Y. Cen, and S. Pan, Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure, Nanoscale 9(38), 14682 (2017)
https://doi.org/10.1039/C7NR02725G
36 F. B. Zheng, L. Zhang, J. Zhang, P. Wang, and C. W. Zhang, Germanene/GaGeTe heterostructure: A promising electric-field induced data storage device with high carrier mobility, Phys. Chem. Chem. Phys. 22(9), 5163 (2020)
https://doi.org/10.1039/C9CP06445A
37 Y. Yao, J. Cao, W. Yin, L. Yang, and X. Wei, A 2D ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: A first-principles study, J. Phys. D Appl. Phys. 53(5), 055108 (2020)
https://doi.org/10.1088/1361-6463/ab50a1
38 W. Li, Z. Lin, and G. Yang, A 2D self-assembled MoS2 /ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution, Nanoscale 9(46), 18290 (2017)
https://doi.org/10.1039/C7NR06755K
39 X. Sun, H. Deng, W. Zhu, Z. Yu, C. Wu, and Y. Xie, Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings, Angew. Chem. Int. Ed. Engl. 55(5), 1704 (2016)
https://doi.org/10.1002/anie.201508571
40 Z. Wei, F. F. Liang, Y. F. Liu, W. J. Luo, J. Wang, W. Q. Yao, and Y. F. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4hybrid heterostructure thin film, Appl. Catal. B 201, 600 (2017)
https://doi.org/10.1016/j.apcatb.2016.09.003
41 W. Yin, B. Wen, Q. Ge, D. Zou, Y. Xu, M. Liu, X. Wei, M. Chen, and X. Fan, Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study, Prog. Nat. Sci.: Mater. Inter. 29, 335 (2019)
https://doi.org/10.1016/j.pnsc.2019.05.003
42 W. Yin, B. Wen, Q. Ge, X. Wei, G. Teobaldi, and L. Liu, Effect of crystal field on the formation and diffusion of oxygen vacancy at anatase (101) surface and sub-surface, Prog. Nat. Sci.: Mater. Inter. 30(1), 128 (2020)
https://doi.org/10.1016/j.pnsc.2020.01.001
43 M. L. Sun, J. P. Chou, Q. Q. Ren, Y. M. Zhao, J. Yu, and W. C. Tang, Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN, Appl. Phys. Lett. 110(17), 173105 (2017)
https://doi.org/10.1063/1.4982690
44 L. Zhou, Y. Dai, J. Guo, R. Chen, Y. Xie, and W. Luo, Novel Ag3PO4/LaCo1−xBixO3 composite photocatalyst with enhanced photocatalytic degradation of BPA under visible light, Mater. Lett. 213, 387 (2018)
https://doi.org/10.1016/j.matlet.2017.10.123
45 Z. Y. Al Balushi, K. Wang, R. K. Ghosh, R. A. Vilá, S. M. Eichfeld, J. D. Caldwell, X. Qin, Y.C. Lin, P. A. DeSario, G. Stone, S. Subramanian, D. F. Paul, R. M. Wallace, S. Datta, J. M. Redwing, and J. A. Robinson, Two-dimensional gallium nitride realized via graphene encapsulation, Nat. Mater. 15(11), 1166 (2016)
https://doi.org/10.1038/nmat4742
46 Y. Zhao, H. Wang, H. Zhou, and T. Lin, Directional fluid transport in thin porous materials and its functional applications, Small 13(4), 1601070 (2017)
https://doi.org/10.1002/smll.201601070
47 X. Li, Z. Li, and J. Yang, Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light, Phys. Rev. Lett. 112(1), 018301 (2014)
https://doi.org/10.1103/PhysRevLett.112.018301
48 G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
49 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set., Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
50 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
51 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
https://doi.org/10.1103/PhysRevLett.78.1396
52 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010)
https://doi.org/10.1063/1.3382344
53 X. B. Li, P. Guo, Y. N. Zhang, R. F. Peng, H. Zhang, and L. M. Liu, High carrier mobility of few-layer PbX (X= S, Se, Te), J. Mater. Chem. C 3(24), 6284 (2015)
https://doi.org/10.1039/C5TC00910C
54 S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boronnitride, Appl. Phys. Lett. 99(22), 222108 (2011)
https://doi.org/10.1063/1.3665183
55 C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin, Influence of an electric field on the optical properties of few-layer graphene with ABstacking, Phys. Rev. B 73(14), 144427 (2006)
https://doi.org/10.1103/PhysRevB.73.144427
[1] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[2] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[3] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[4] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[5] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[6] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[7] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[8] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[9] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[10] Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu. Electronic and magnetic structures of chain structured iron selenide compounds[J]. Front. Phys. , 2014, 9(4): 465-471.
[11] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
[12] Hao CHEN (陈灏). The first-principles calculation of molecular conduction[J]. Front. Phys. , 2009, 4(3): 327-336.
[13] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front. Phys. , 2009, 4(3): 256-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed