|
|
β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations |
Quan Chen (陈泉)1,2, Wei Li (李伟)1, Yong Yang (杨勇)1,3( ) |
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China 2. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China 3. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract β-PtO2 is a useful transition metal dioxide, but its fundamental thermodynamic and elastic properties remain unexplored. Using first-principles calculations, we systematically studied the structure, phonon, thermodynamic and elastic properties of β-PtO2. The lattice dynamics and structural stability of β-PtO2 under pressure were studied using the phonon spectra and vibrational density of states. The vibrational frequencies of the optical modes of β-PtO2 increase with elevating pressure; this result is comparable with the available experimental data. Then, the heat capacities and their pressure responses were determined based on the phonon calculations. The pressure dependence of the Debye temperature was studied, and the results were compared in two distinct aspects. The elastic moduli of β-PtO2 were estimated through the Voigt–Reuss–Hill approximation. The bulk modulus of β-PtO2 increases linearly with pressure, but the shear modulus is nearly independent of pressure. Our study revealed that the elastic stiffness coefficients C44, C55 and C66 play a primary role in the slow variation of the shear modulus.
|
Keywords
phonons
thermodynamic and elastic properties
β-PtO2
first-principles calculations
|
Corresponding Author(s):
Yong Yang (杨勇)
|
Issue Date: 24 May 2019
|
|
1 |
C. Z. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Mixed transition-metal oxides: Design, synthesis, and energyrelated applications, Angew. Chem. Int. Ed. 53(6), 1488 (2014)
https://doi.org/10.1002/anie.201303971
|
2 |
Z. Chen, R. J. Xiao, C. Ma, Y. B. Qin, H. L. Shi, Z. W. Wang, Y. J. Song, Z. Wang, H. F. Tian, H. X. Yang, and J. Q. Li, Electronic structure of YMn2O5 studied by EELS and first-principles calculations, Front. Phys. 7(4), 429 (2012)
https://doi.org/10.1007/s11467-011-0201-4
|
3 |
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+Umethod, Front. Phys. 8(4), 405 (2013)
https://doi.org/10.1007/s11467-013-0331-y
|
4 |
N. Sabourault, G. Mignani, A. Wagner, and C. Mioskowski, Platinum oxide (PtO2): A potent hydrosilylation catalyst, Org. Lett. 4(13), 2117 (2002)
https://doi.org/10.1021/ol025658r
|
5 |
L. Maya, L. Riester, T. Thundat, and C. S. Yust, Characterization of sputtered amorphous platinum dioxide films, J. Appl. Phys. 84(11), 6382 (1998)
https://doi.org/10.1063/1.368883
|
6 |
L. B. Hunt, The Story of Adams’ Catalyst, Platin. Met. Rev. 6, 150 (1962)
|
7 |
M. M. Najafpour and S. M. Hosseini, Highly dispersed PtO2 on layered Mn oxide as water-oxidizing catalysts, Int. J. Hydrogen Energy 41(16), 6798 (2016)
https://doi.org/10.1016/j.ijhydene.2016.03.054
|
8 |
S. Putzien, E. Louis, O. Nuyken, and F. E. Kühn, PtO2 as a “self-dosing” hydrosilylation catalyst,Catal. Sci. Technol. 2(4), 725 (2012)
https://doi.org/10.1039/C2CY00367H
|
9 |
R. Wu, and W. H. Weber, The mechanism of the rutileto- CaCl2 phase transition: RuO2 and β-PtO2, J. Phys.: Condens. Matter 12(30), 6725 (2000)
https://doi.org/10.1088/0953-8984/12/30/305
|
10 |
Y. Yang, O. Sugino, and T. Ohno, Band gap of β-PtO2 from first-principles, AIP Adv. 2(2), 022172 (2012)
https://doi.org/10.1063/1.4733348
|
11 |
R. K. Nomiyama, M. J. Piotrowski, and J. L. F. Da Silva, Bulk structures of PtO and PtO2 from density functional calculations, Phys. Rev. B 84(10), 100101 (2011)
https://doi.org/10.1103/PhysRevB.84.100101
|
12 |
H. R. Hoekstra, S. Siegel, and F. X. Gallagher, Reaction of platinum dioxide with some metal oxides, Adv. Chem. Ser. 98, 39 (1971)
https://doi.org/10.1021/ba-1971-0098.ch004
|
13 |
S. Siegel, H. R. Hoekstra, and B. S. Tani, The crystal structure of beta-platinum dioxide, J. Inorg. Nucl. Chem. 31(12), 3803 (1969)
https://doi.org/10.1016/0022-1902(69)80300-3
|
14 |
M. P. H. Fernandez and B. L. Chamberland, A new high pressure form of PtO2, J. Less Common Met. 99(1), 99 (1984)
https://doi.org/10.1016/0022-5088(84)90338-2
|
15 |
K. J. Range, F. Rau, U. Klement, and A. M. Heyns, β-PtO2: High pressure synthesis of single crystals and structure refinement, Mater. Res. Bull. 22(11), 1541 (1987)
https://doi.org/10.1016/0025-5408(87)90220-0
|
16 |
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
|
17 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
18 |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
|
19 |
J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
https://doi.org/10.1103/PhysRevB.23.5048
|
20 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
21 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
22 |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
|
23 |
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
|
24 |
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+Ustudy, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
|
25 |
Y. Yang, O. Sugino, and T. Ohno, Possible magnetic behavior in oxygen-deficient β-PtO2, Phys. Rev. B 85(3), 035204 (2012)
https://doi.org/10.1103/PhysRevB.85.035204
|
26 |
F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
https://doi.org/10.1073/pnas.30.9.244
|
27 |
S. Zhuo and K. Sohlberg, Platinum dioxide phases: Relative thermodynamic stability and kinetics of interconversion from first-principles,Physica B 381(1–2), 12 (2006)
https://doi.org/10.1016/j.physb.2005.11.170
|
28 |
W. H. Weber, G. W. Graham, and J. R. McBride, Raman spectrum of β-PtO2: Evidence for the D2h12-to-D4h14 phase transition, Phys. Rev. B 42(17), 10969 (1990)
https://doi.org/10.1103/PhysRevB.42.10969
|
29 |
G. Grimvall, Thermophysical Properties of Materials, Elsevier, 1999
|
30 |
P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789 (1912)
https://doi.org/10.1002/andp.19123441404
|
31 |
P. L. Dulong and A.T. Petit, Recherches sur quelques points importans de la theorie de la Chaleur, 1819
|
32 |
J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry, J. Appl. Phys. 50(10), 6290 (1979)
https://doi.org/10.1063/1.325768
|
33 |
A. Reuss, Account of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystal, Z. Angew, Math. Mech. 9, 49 (1929)
https://doi.org/10.1002/zamm.19290090104
|
34 |
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. 65, 349 (1952)
https://doi.org/10.1088/0370-1298/65/5/307
|
35 |
W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928
|
36 |
E. Schreiber, O. L. Anderson, and M. Saga, Elastic Constants and Their Measurement, McGraw-Hill, New York, 1973
|
37 |
O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7), 909 (1963)
https://doi.org/10.1016/0022-3697(63)90067-2
|
38 |
H. J. Reichmann and S. D. Jacobsen, Sound velocities and elastic constants of ZnAl2O4 spinel and implications for spinel-elasticity systematics, Am. Mineral. 91(7), 1049 (2006)
https://doi.org/10.2138/am.2006.2122
|
39 |
H. J. Reichmann and S. D. Jacobsen, High-pressure elasticity of a natural magnetite crystal, Am. Mineral. 89(7), 1061 (2004)
https://doi.org/10.2138/am-2004-0718
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|