|
|
First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni) |
Xin-Long Dong1,2, Kun-Hua Zhang3( ), Ming-Xiang Xu2( ) |
1. College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China 2. Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China 3. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We used first-principles calculations to conduct a comparative study of the structure and the electronic and magnetic properties of SrTiO3 doped with a transition metal (TM), namely, Cr, Mn, Fe, Co, or Ni. The calculated formation energies indicate that compared with Sr, Ti can be substituted more easily by the TM ions. The band structures show that SrTi0.875Cr0.125O3 and SrTi0.875Co0.125O3 are half metals, SrTi0.875Fe0.125O3 is a metal, and SrTi0.875Mn0.125O3 is a semiconductor. The 3d TM-doped SrTiO3 exhibits various magnetic properties, ranging from ferromagnetism (Cr-, Fe-, and Co-doped SrTiO3) to antiferromagnetism (Mn-doped SrTiO3) and nonmagnetism (Ni-doped SrTiO3). The total magnetic moments are 4.0μB, 6.23μB, and 2.0μB for SrTi0.75Cr0.25O3, SrTi0.75Fe0.25O3, and SrTi0.75Co0.25O3, respectively. Room-temperature ferromagnetism can be expected in Cr-, Fe-, and Co-doped SrTiO3, which agrees with the experimental observations. The electronic structure calculations show that the spin polarizations of the 3d states of the TM atoms are responsible for the ferromagnetism in these compounds. The magnetism of TM-doped SrTiO3 is explained by the hybridization between the TM-3d states and the O-2p states.
|
Keywords
first-principles calculations
SrTiO3
electronic structure
ferromagnetism
|
Corresponding Author(s):
Kun-Hua Zhang,Ming-Xiang Xu
|
Issue Date: 06 July 2018
|
|
1 |
D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3. LDA+ U study, Phys. Rev. Lett. 98(11), 115503 (2007)
https://doi.org/10.1103/PhysRevLett.98.115503
|
2 |
N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films, Phys. Rev. B 61(2), R825 (2000)
https://doi.org/10.1103/PhysRevB.61.R825
|
3 |
J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Room-temperature ferroelectricity in strained SrTiO3, Nature 430(7001), 758 (2004)
https://doi.org/10.1038/nature02773
|
4 |
M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates, Appl. Phys. Lett. 88(19), 192907 (2006)
https://doi.org/10.1063/1.2198088
|
5 |
H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained Pb- TiO3 films, Front. Phys. 10(6), 107701 (2015)
https://doi.org/10.1007/s11467-015-0512-y
|
6 |
R. N. Song, M. H. Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111), Front. Phys. 10(3), 106802 (2015)
https://doi.org/10.1007/s11467-015-0467-z
|
7 |
A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A. S. Bhalla, and L. E. Cross, Dielectric polarization processes in Bi. SrTiO3, J. Phys. Chem. Solids 61(2), 191 (2000)
https://doi.org/10.1016/S0022-3697(99)00281-4
|
8 |
M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan, and T. Nakamura, Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82(17), 3540 (1999)
https://doi.org/10.1103/PhysRevLett.82.3540
|
9 |
I. Hase, T. Saitoh, and T. Katsufuji, Ab initiocalculation of charge- and spin-controlled Sr1−x−yLax+yTi1−xCrxO3, J. Magn. Magn. Mater. 310(2), e281 (2007)
https://doi.org/10.1016/j.jmmm.2006.10.402
|
10 |
H. Nakayama and H. Katayama-Yoshida, Theoretical prediction of magnetic properties of Ba(Ti1−xMx)O3 (M= Sc, V, Cr, Mn, Fe, Co, Ni, Cu), Jpn. J. Appl. Phys. 40(2), L1355 (2001)
https://doi.org/10.1143/JJAP.40.L1355
|
11 |
J. S. Lee, Z. G. Khim, Y. D. Park, D. P. Norton, N. A. Theodoropoulou, A. F. Hebard, J. D. Budai, L. A. Boatner, S. J. Pearton, and R. G. Wilson, Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3, Solid-State Electron. 47(12), 2225 (2003)
https://doi.org/10.1016/S0038-1101(03)00202-8
|
12 |
S. Y. Zhang, Y. H. Lin, C. W. Nan, R. Zhao, and J. He, Magnetic and electrical properties of (Mn, La)-codoped SrTiO3 thin films, J. Am. Ceram. Soc. 91(10), 3263 (2008)
https://doi.org/10.1111/j.1551-2916.2008.02602.x
|
13 |
H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Magnetic and magneto-optical properties of Fe-doped Sr- TiO3 films, Appl. Phys. Lett. 93(9), 092506 (2008)
https://doi.org/10.1063/1.2977963
|
14 |
D. H. Kim, N. M. Aimon, L. Bi, G. F. Dionne, and C. A. Ross, The role of deposition conditions on the structure and magnetic properties of SrTi1−xFexO3 films, J. Appl. Phys. 111(7), 07A918 (2012)
|
15 |
Y. G. Zhao, S. R. Shinde, S. B. Ogale, J. Higgins, R. J. Choudhary, V. N. Kulkarni, R. L. Greene, T. Venkatesan, S. E. Lofland, C. Lanci, J. P. Buban, N. D. Browning, S. Das Sarma, and A. J. Millis, Co-doped La0.5Sr0.5TiO3−d. Diluted magnetic oxide system with high Curie temperature, Appl. Phys. Lett. 83(11), 2199 (2003)
https://doi.org/10.1063/1.1610796
|
16 |
L. Bi, H. S. Kim, G. F. Dionne, and C. A. Ross, Structure, magnetic properties and magnetoelastic anisotropy in epitaxial Sr(Ti1−xCox)O3 films, New J. Phys. 12(4), 043044 (2010)
https://doi.org/10.1088/1367-2630/12/4/043044
|
17 |
D. Yao, X. Zhou, and S. Ge, Raman scattering and room temperature ferromagnetism in Co-doped SrTiO3 particles, Appl. Surf. Sci. 257(22), 9233 (2011)
https://doi.org/10.1016/j.apsusc.2011.04.039
|
18 |
G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
https://doi.org/10.1103/PhysRevB.48.13115
|
19 |
G. Kresse and J. Furthmuller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
20 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
21 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
22 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
23 |
H. J. Monkhorst and J. D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
|
24 |
Y. Zhang, J. Hu, E. Cao, L. Sun, and H. Qin, Vacancy induced magnetism in SrTiO3, J. Magn. Magn. Mater. 324(10), 1770 (2012)
https://doi.org/10.1016/j.jmmm.2011.12.036
|
25 |
F. Li, K. Yu, L. L. Lou, Z. Su, and S. Liu, Theoretical and experimental study of La/Ni co-doped SrTiO3 photocatalyst, Mater. Sci. Eng. B 172(2), 136 (2010)
https://doi.org/10.1016/j.mseb.2010.04.036
|
26 |
C. Zhang, C. L. Wang, J. C. Li, K. Yang, Y. F. Zhang, and Q. Z. Wu, Substitutional position and insulatorto- metal transition in Nb-doped SrTiO3, Mater. Chem. Phys. 107(2–3), 215 (2008)
https://doi.org/10.1016/j.matchemphys.2007.07.001
|
27 |
C. Yang, T. Liu, Z. Cheng, H. Gan, and J. Chen, Study on Mn-doped SrTiO3 with first principle calculation, Physica B 407(5), 844 (2012)
https://doi.org/10.1016/j.physb.2011.12.020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|