Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137102    https://doi.org/10.1007/s11467-017-0723-5
RESEARCH ARTICLE
Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study
Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅)(), Yan-Ling Li (李延龄)
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
 Download: PDF(2053 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm−1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

Keywords Li-Hg alloys elastic property phonon spectrum electronic structure     
Corresponding Author(s): Hong-Mei Huang (黄红梅)   
Issue Date: 30 October 2017
 Cite this article:   
Yan Wang (王研),Chun-Mei Hao (郝春梅),Hong-Mei Huang (黄红梅), et al. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0723-5
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137102
1 S.Kauzlarich, Chemistry, Structure and Bonding of Zintl Phases and Ions, New York: VCH Publishers, 1996
2 K.Kishioand J. O.Brittain, Defect structure of β-LiAl, J. Phys. Chem. Solids40(12), 933 (1979)
https://doi.org/10.1016/0022-3697(79)90121-5
3 N. E.Christensen, Structural phase stability of B2 and B32 intermetallic compounds, Phys. Rev. B32(1), 207(1985)
https://doi.org/10.1103/PhysRevB.32.207
4 F.Wangand G. J.Miller,Revisiting the Zintl–Klemm concept: Alkali metal trielides, Inorg. Chem. 50(16), 7625(2011)
https://doi.org/10.1021/ic200643f
5 R. E.Olson, Determination of the Li–Hg intermolecular potential from molecular-beam scattering measurements, J. Chem. Phys. 49(10), 4499(1968)
https://doi.org/10.1063/1.1669902
6 U.Buck, H. O.Hoppe, F.Huisken, and H.Pauly, Intermolecular potentials by the inversion of molecular beam scattering data (IV): Differential cross sections and potential for LiHg, J. Chem. Phys. 60(12), 4925(1974)
https://doi.org/10.1063/1.1681004
7 M. M.Gleichmannand B. A.Hess, Relativistic all‐electron ab initiocalculations of ground and excited states of LiHg including spin–orbit effects, J. Chem. Phys. 101(11), 9691(1994)
https://doi.org/10.1063/1.467934
8 D.Gruberand X.Li, Vibrational constants and longrange potentials of the LiHg (X12) ground state, Chem. Phys. Lett. 240(1–3), 42(1995)
https://doi.org/10.1016/0009-2614(95)00513-4
9 D.Gruber, L.Windholz, X.Li, M.Gleichmann, and B.He, Theoretical and experimental studies of th LiHgblue green bands, AIP Conf. Proc. 328, 406(1995)
https://doi.org/10.1063/1.47488
10 D.Gruber, X.Li, L.Windholz, M.Gleichmann, B. A.Hess, I.Vezmar, and G.Pichler, The LiHg(22∏3/2−X2Σ1/2+) system, J. Phys. Chem. 100(24), 10062(1996)
https://doi.org/10.1021/jp9602078
11 D.Gruber, M.Musso, L.Windholz, M.Gleichmann, B. A.Hess, F.Fuso, and M.Allegrini, Study of the LiHg excimer: Blue–green bands, J. Chem. Phys. 101(2), 929(1994)
https://doi.org/10.1063/1.467747
12 L. F.Kozinand S. C.Hansen, Mercury Handbook: Chemistry, Applications and Environmental Impact, United Kingdom: Royal Society of Chemistry publishing, 2013
13 F.Tamborninoand C.Hoch, Bad metal behaviour in the new Hg-rich amalgam KHg6 with polar metallic bonding, J. Alloys Compd. 618, 299(2015)
https://doi.org/10.1016/j.jallcom.2014.08.173
14 J. P.Perdew, K.Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
https://doi.org/10.1103/PhysRevLett.77.3865
15 G.Kresseand J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15(1996)
https://doi.org/10.1016/0927-0256(96)00008-0
16 P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B50(24), 17953(1994)
https://doi.org/10.1103/PhysRevB.50.17953
17 G.Kresseand D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B59(3), 1758(1999)
https://doi.org/10.1103/PhysRevB.59.1758
18 P.Giannozzi, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21, 395502(2009)
https://doi.org/10.1088/0953-8984/21/39/395502
19 M.Bornand K.Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1956
20 Y. L.Liand Z.Zeng, Potential ultra-incompressible material ReN: First-principles prediction, Solid State Commun. 149(39–40), 1591(2009)
https://doi.org/10.1016/j.ssc.2009.06.040
21 Y.Li, Z.Zeng, and H.Lin, Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations, Chem. Phys. Lett. 492(4–6), 246(2010)
https://doi.org/10.1016/j.cplett.2010.04.074
22 Y. L.Li, W.Luo, X. J.Chen, Z.Zeng, H. Q.Lin, and R.Ahuja, Formation of Nanofoam carbon and reemergence of Superconductivity in compressed CaC6, Sci. Rep. 3(1), 3331(2013)
https://doi.org/10.1038/srep03331
23 Y. L.Li, W.Luo, Z.Zeng, H. Q.Lin, H. K.Mao, and R.Ahuja, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. USA110(23), 9289(2013)
https://doi.org/10.1073/pnas.1307384110
24 R.Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond.65(5), 349(1952)
https://doi.org/10.1088/0370-1298/65/5/307
25 S. F.Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823(1954)
https://doi.org/10.1080/14786440808520496
26 P.Ravindran, L.Fast, P. A.Korzhavyi, B.Johansson, J.Wills, and O.Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891(1998)
https://doi.org/10.1063/1.368733
27 Y. L.Liand Z.Zeng, Structural, elastic, and electronic properties of ReO2, Chin. Phys. Lett. 25(11), 4086(2008)
https://doi.org/10.1016/j.physleta.2008.03.005
28 C.Zener, Elasticity and Anelasticity of Metals, Chicago: Chicago University Press, 1948
29 Y. L.Li, S. N.Wang, A. R.Oganov, H.Gou, J. S.Simth, and T. A.Strobel, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun. 6, 6974(2015)
https://doi.org/10.1038/ncomms7974
30 S. J.Clark, M. D.Segall, C. J.Pickard, P. J.Hasnip, M. J.Probert, K.Refson, and M. C.Payne, First principles methods using CASTEP, Z. Kristallogr. 220(5–6), 567(2005)
https://doi.org/10.1524/zkri.220.5.567.65075
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed