|
|
Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study |
Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅)( ), Yan-Ling Li (李延龄) |
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China |
|
|
Abstract The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm−1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.
|
Keywords
Li-Hg alloys elastic property phonon spectrum electronic structure
|
Corresponding Author(s):
Hong-Mei Huang (黄红梅)
|
Issue Date: 30 October 2017
|
|
1 |
S.Kauzlarich, Chemistry, Structure and Bonding of Zintl Phases and Ions, New York: VCH Publishers, 1996
|
2 |
K.Kishioand J. O.Brittain, Defect structure of β-LiAl, J. Phys. Chem. Solids40(12), 933 (1979)
https://doi.org/10.1016/0022-3697(79)90121-5
|
3 |
N. E.Christensen, Structural phase stability of B2 and B32 intermetallic compounds, Phys. Rev. B32(1), 207(1985)
https://doi.org/10.1103/PhysRevB.32.207
|
4 |
F.Wangand G. J.Miller,Revisiting the Zintl–Klemm concept: Alkali metal trielides, Inorg. Chem. 50(16), 7625(2011)
https://doi.org/10.1021/ic200643f
|
5 |
R. E.Olson, Determination of the Li–Hg intermolecular potential from molecular-beam scattering measurements, J. Chem. Phys. 49(10), 4499(1968)
https://doi.org/10.1063/1.1669902
|
6 |
U.Buck, H. O.Hoppe, F.Huisken, and H.Pauly, Intermolecular potentials by the inversion of molecular beam scattering data (IV): Differential cross sections and potential for LiHg, J. Chem. Phys. 60(12), 4925(1974)
https://doi.org/10.1063/1.1681004
|
7 |
M. M.Gleichmannand B. A.Hess, Relativistic all‐electron ab initiocalculations of ground and excited states of LiHg including spin–orbit effects, J. Chem. Phys. 101(11), 9691(1994)
https://doi.org/10.1063/1.467934
|
8 |
D.Gruberand X.Li, Vibrational constants and longrange potentials of the LiHg (X12) ground state, Chem. Phys. Lett. 240(1–3), 42(1995)
https://doi.org/10.1016/0009-2614(95)00513-4
|
9 |
D.Gruber, L.Windholz, X.Li, M.Gleichmann, and B.He, Theoretical and experimental studies of th LiHgblue green bands, AIP Conf. Proc. 328, 406(1995)
https://doi.org/10.1063/1.47488
|
10 |
D.Gruber, X.Li, L.Windholz, M.Gleichmann, B. A.Hess, I.Vezmar, and G.Pichler, The LiHg(22∏3/2−X2Σ1/2+) system, J. Phys. Chem. 100(24), 10062(1996)
https://doi.org/10.1021/jp9602078
|
11 |
D.Gruber, M.Musso, L.Windholz, M.Gleichmann, B. A.Hess, F.Fuso, and M.Allegrini, Study of the LiHg excimer: Blue–green bands, J. Chem. Phys. 101(2), 929(1994)
https://doi.org/10.1063/1.467747
|
12 |
L. F.Kozinand S. C.Hansen, Mercury Handbook: Chemistry, Applications and Environmental Impact, United Kingdom: Royal Society of Chemistry publishing, 2013
|
13 |
F.Tamborninoand C.Hoch, Bad metal behaviour in the new Hg-rich amalgam KHg6 with polar metallic bonding, J. Alloys Compd. 618, 299(2015)
https://doi.org/10.1016/j.jallcom.2014.08.173
|
14 |
J. P.Perdew, K.Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
15 |
G.Kresseand J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15(1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
16 |
P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B50(24), 17953(1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
17 |
G.Kresseand D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B59(3), 1758(1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
18 |
P.Giannozzi, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21, 395502(2009)
https://doi.org/10.1088/0953-8984/21/39/395502
|
19 |
M.Bornand K.Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1956
|
20 |
Y. L.Liand Z.Zeng, Potential ultra-incompressible material ReN: First-principles prediction, Solid State Commun. 149(39–40), 1591(2009)
https://doi.org/10.1016/j.ssc.2009.06.040
|
21 |
Y.Li, Z.Zeng, and H.Lin, Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations, Chem. Phys. Lett. 492(4–6), 246(2010)
https://doi.org/10.1016/j.cplett.2010.04.074
|
22 |
Y. L.Li, W.Luo, X. J.Chen, Z.Zeng, H. Q.Lin, and R.Ahuja, Formation of Nanofoam carbon and reemergence of Superconductivity in compressed CaC6, Sci. Rep. 3(1), 3331(2013)
https://doi.org/10.1038/srep03331
|
23 |
Y. L.Li, W.Luo, Z.Zeng, H. Q.Lin, H. K.Mao, and R.Ahuja, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. USA110(23), 9289(2013)
https://doi.org/10.1073/pnas.1307384110
|
24 |
R.Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond.65(5), 349(1952)
https://doi.org/10.1088/0370-1298/65/5/307
|
25 |
S. F.Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823(1954)
https://doi.org/10.1080/14786440808520496
|
26 |
P.Ravindran, L.Fast, P. A.Korzhavyi, B.Johansson, J.Wills, and O.Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891(1998)
https://doi.org/10.1063/1.368733
|
27 |
Y. L.Liand Z.Zeng, Structural, elastic, and electronic properties of ReO2, Chin. Phys. Lett. 25(11), 4086(2008)
https://doi.org/10.1016/j.physleta.2008.03.005
|
28 |
C.Zener, Elasticity and Anelasticity of Metals, Chicago: Chicago University Press, 1948
|
29 |
Y. L.Li, S. N.Wang, A. R.Oganov, H.Gou, J. S.Simth, and T. A.Strobel, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun. 6, 6974(2015)
https://doi.org/10.1038/ncomms7974
|
30 |
S. J.Clark, M. D.Segall, C. J.Pickard, P. J.Hasnip, M. J.Probert, K.Refson, and M. C.Payne, First principles methods using CASTEP, Z. Kristallogr. 220(5–6), 567(2005)
https://doi.org/10.1524/zkri.220.5.567.65075
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|