|
|
Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study |
Qing-Xiao Zhou1,2, Chao-Yang Wang2, Zhi-Bing Fu2, Yong-Jian Tang2, Hong Zhang1,3( ) |
1. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China; 2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 3. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
|
|
Abstract The geometries, formation energies and electronic band structures of (8, 0) and (14, 0) single-walled carbon nanotubes (SWCNTs) with various defects, including vacancy, Stone–Wales defect, and octagon–pentagon pair defect, have been investigated within the framework of the density-functional theory (DFT), and the influence of the concentration within the same style of defect on the physical and chemical properties of SWCNTs is also studied. The results suggest that the existence of vacancy and octagon–pentagon pair defect both reduce the band gap, whereas the SW-defect induces a band gap opening in CNTs. More interestingly, the band gaps of (8, 0) and (14, 0) SWCNTs configurations with two octagon–pentagon pair defect presents 0.517 eV and 0.163 eV, which are a little smaller than the perfect CNTs. Furthermore, with the concentration of defects increasing, there is a decreasing of band gap making the two types of SWCNTs change from a semiconductor to a metallic conductor.
|
Keywords
carbon nanotube
density functional theory
defect
electronic structure
|
Corresponding Author(s):
Zhang Hong,Email:hongzhang@scu.edu.cn
|
Issue Date: 01 April 2014
|
|
1 |
R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. , 1998, 73(17): 2447 doi: 10.1063/1.122477
|
2 |
Y. W. Son, M. L. Cohen, and S. G. Louie, Electric field effects on spin transport in defective metallic carbon nanotubes, Nano Lett. , 2007, 7(11): 3518 doi: 10.1021/nl0721822
|
3 |
Z. W. Zhang, J. C. Li, and Q. Jiang, Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review, Front. Phys. , 2011, 6(2): 162 doi: 10.1007/s11467-011-0174-3
|
4 |
L. F. Huang and Z. Zheng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. , 2012, 7(3): 324 doi: 10.1007/s11467-011-0239-3
|
5 |
H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, and S. Iijima, Structural identification of single and double-walled carbon nanotubes by high-resolution transmission electron microscopy, Chem. Phys. Lett. , 2005, 412(1-3): 116 doi: 10.1016/j.cplett.2005.06.119
|
6 |
M. Ouyang, Energy gaps in “metallic” single-walled carbon nanotubes, Science , 2001, 292(5517): 702 doi: 10.1126/science.1058853
|
7 |
J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high emperatures, Phys. Rev. Lett. , 2007, 98(18): 185501 doi: 10.1103/PhysRevLett.98.185501
|
8 |
A. J. Stone and D. J. Wales, Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. , 1986, 128(5-6): 501 doi: 10.1016/0009-2614(86)80661-3
|
9 |
J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, An extended defect in graphene as a metallic wire, Nat. Nanotechnol. , 2010, 53:1
|
10 |
M. T. Lusk, D. T. Wu, and L. D. Carr, Graphene nanoengineering and the inverse-Stone–Thrower–Wales defect, Phys. Rev. B , 2010, 81(15): 155444 doi: 10.1103/PhysRevB.81.155444
|
11 |
G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The role of pentagon–heptagon pair defect in carbon nanotube: The center of vacancy reconstruction, Appl. Phys. Lett. , 2010, 97(9): 093106 doi: 10.1063/1.3481799
|
12 |
A. V. Krasheninnikov and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. , 2010, 107(7): 071301 doi: 10.1063/1.3318261
|
13 |
A. Tolvanen, G. Buchs, P. Ruffieux, P. Gr?ning, O. Gr?ning, and A. Krasheninnikov, Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation, Phys. Rev. B , 2009, 79(12): 125430 doi: 10.1103/PhysRevB.79.125430
|
14 |
C. X. Zhang, C. He, Z. Yu, L. Xue, K. W. Zhang, L. Z. Sun, and J. Zhong, Effects of oxygen-containing defect complex on the electronic structures and transport properties of single-walled carbon nanotubes, Phys. Lett. A , 2012, 376(20): 1686 doi: 10.1016/j.physleta.2012.03.052
|
15 |
M. Bockrath, Resonant electron scattering by defects in single-walled carbon nanotubes, Science , 2001, 291(5502): 283 doi: 10.1126/science.291.5502.283
|
16 |
S. Okada, K. Nakada, K. Kuwabara, K. Daigoku, and T. Kawai, Ferromagnetic spin ordering on carbon nanotubes with topological line defects, Phys. Rev. B , 2006, 74(12): 121412 doi: 10.1103/PhysRevB.74.121412
|
17 |
Y. Yang, Y. Xiao, W. Ren, X. Yan, and F. Pan, Halfmetallic chromium-chain-embedded wire in graphene and carbon nanotubes, Phys. Rev. B , 2011, 84(19): 195447 doi: 10.1103/PhysRevB.84.195447
|
18 |
W. Orellana, Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects, Phys. Rev. B , 2009, 80(7): 075421 doi: 10.1103/PhysRevB.80.075421
|
19 |
K. Nishidate and M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, Phys. Rev. B , 2005, 71(24): 245418 doi: 10.1103/PhysRevB.71.245418
|
20 |
H. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett. , 2000, 84(13): 2917 doi: 10.1103/PhysRevLett.84.2917
|
21 |
G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube, Appl. Phys. Lett. , 2008, 92(4): 043104 doi: 10.1063/1.2837632
|
22 |
X. Qin, Q. Y. Meng, and W. Zhao, Effects of Stone–Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: A first principle study, Surf. Sci. , 2011, 605(9-10): 930 doi: 10.1016/j.susc.2011.02.006
|
23 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. , 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
|
24 |
B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. , 2000, 113(18): 7756 doi: 10.1063/1.1316015
|
25 |
P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: University of Ontario Press, 1999 doi: 10.1017/CBO9780511605819
|
26 |
E. Durgun, S. Dag, V. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B , 2003, 67(20): 201401 doi: 10.1103/PhysRevB.67.201401
|
27 |
X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. , 1994, 72(12): 1878 doi: 10.1103/PhysRevLett.72.1878
|
28 |
B. I. Yakobson, G. Samsonidze, and G. G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes, Carbon , 2000, 38(11-12): 1675 doi: 10.1016/S0008-6223(00)00093-2
|
29 |
G. G. Samsonidze, G. G. Samsonidze, and B. I. Yakobson, Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers, Comput. Mater. Sci. , 2002, 23(1-4): 62 doi: 10.1016/S0927-0256(01)00220-8
|
30 |
D. Tekleab, D. Carroll, G. Samsonidze, and B. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B , 2001, 64(3): 035419 doi: 10.1103/PhysRevB.64.035419
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|