Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (2) : 200-209    https://doi.org/10.1007/s11467-013-0409-6
Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study
Qing-Xiao Zhou1,2, Chao-Yang Wang2, Zhi-Bing Fu2, Yong-Jian Tang2, Hong Zhang1,3()
1. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China; 2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 3. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
 Download: PDF(1165 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The geometries, formation energies and electronic band structures of (8, 0) and (14, 0) single-walled carbon nanotubes (SWCNTs) with various defects, including vacancy, Stone–Wales defect, and octagon–pentagon pair defect, have been investigated within the framework of the density-functional theory (DFT), and the influence of the concentration within the same style of defect on the physical and chemical properties of SWCNTs is also studied. The results suggest that the existence of vacancy and octagon–pentagon pair defect both reduce the band gap, whereas the SW-defect induces a band gap opening in CNTs. More interestingly, the band gaps of (8, 0) and (14, 0) SWCNTs configurations with two octagon–pentagon pair defect presents 0.517 eV and 0.163 eV, which are a little smaller than the perfect CNTs. Furthermore, with the concentration of defects increasing, there is a decreasing of band gap making the two types of SWCNTs change from a semiconductor to a metallic conductor.

Keywords carbon nanotube      density functional theory      defect      electronic structure     
Corresponding Author(s): Zhang Hong,Email:hongzhang@scu.edu.cn   
Issue Date: 01 April 2014
 Cite this article:   
Qing-Xiao Zhou,Chao-Yang Wang,Zhi-Bing Fu, et al. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0409-6
https://academic.hep.com.cn/fop/EN/Y2014/V9/I2/200
1 R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. , 1998, 73(17): 2447
doi: 10.1063/1.122477
2 Y. W. Son, M. L. Cohen, and S. G. Louie, Electric field effects on spin transport in defective metallic carbon nanotubes, Nano Lett. , 2007, 7(11): 3518
doi: 10.1021/nl0721822
3 Z. W. Zhang, J. C. Li, and Q. Jiang, Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review, Front. Phys. , 2011, 6(2): 162
doi: 10.1007/s11467-011-0174-3
4 L. F. Huang and Z. Zheng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. , 2012, 7(3): 324
doi: 10.1007/s11467-011-0239-3
5 H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, and S. Iijima, Structural identification of single and double-walled carbon nanotubes by high-resolution transmission electron microscopy, Chem. Phys. Lett. , 2005, 412(1-3): 116
doi: 10.1016/j.cplett.2005.06.119
6 M. Ouyang, Energy gaps in “metallic” single-walled carbon nanotubes, Science , 2001, 292(5517): 702
doi: 10.1126/science.1058853
7 J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high emperatures, Phys. Rev. Lett. , 2007, 98(18): 185501
doi: 10.1103/PhysRevLett.98.185501
8 A. J. Stone and D. J. Wales, Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. , 1986, 128(5-6): 501
doi: 10.1016/0009-2614(86)80661-3
9 J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, An extended defect in graphene as a metallic wire, Nat. Nanotechnol. , 2010, 53:1
10 M. T. Lusk, D. T. Wu, and L. D. Carr, Graphene nanoengineering and the inverse-Stone–Thrower–Wales defect, Phys. Rev. B , 2010, 81(15): 155444
doi: 10.1103/PhysRevB.81.155444
11 G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The role of pentagon–heptagon pair defect in carbon nanotube: The center of vacancy reconstruction, Appl. Phys. Lett. , 2010, 97(9): 093106
doi: 10.1063/1.3481799
12 A. V. Krasheninnikov and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. , 2010, 107(7): 071301
doi: 10.1063/1.3318261
13 A. Tolvanen, G. Buchs, P. Ruffieux, P. Gr?ning, O. Gr?ning, and A. Krasheninnikov, Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation, Phys. Rev. B , 2009, 79(12): 125430
doi: 10.1103/PhysRevB.79.125430
14 C. X. Zhang, C. He, Z. Yu, L. Xue, K. W. Zhang, L. Z. Sun, and J. Zhong, Effects of oxygen-containing defect complex on the electronic structures and transport properties of single-walled carbon nanotubes, Phys. Lett. A , 2012, 376(20): 1686
doi: 10.1016/j.physleta.2012.03.052
15 M. Bockrath, Resonant electron scattering by defects in single-walled carbon nanotubes, Science , 2001, 291(5502): 283
doi: 10.1126/science.291.5502.283
16 S. Okada, K. Nakada, K. Kuwabara, K. Daigoku, and T. Kawai, Ferromagnetic spin ordering on carbon nanotubes with topological line defects, Phys. Rev. B , 2006, 74(12): 121412
doi: 10.1103/PhysRevB.74.121412
17 Y. Yang, Y. Xiao, W. Ren, X. Yan, and F. Pan, Halfmetallic chromium-chain-embedded wire in graphene and carbon nanotubes, Phys. Rev. B , 2011, 84(19): 195447
doi: 10.1103/PhysRevB.84.195447
18 W. Orellana, Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects, Phys. Rev. B , 2009, 80(7): 075421
doi: 10.1103/PhysRevB.80.075421
19 K. Nishidate and M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, Phys. Rev. B , 2005, 71(24): 245418
doi: 10.1103/PhysRevB.71.245418
20 H. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett. , 2000, 84(13): 2917
doi: 10.1103/PhysRevLett.84.2917
21 G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube, Appl. Phys. Lett. , 2008, 92(4): 043104
doi: 10.1063/1.2837632
22 X. Qin, Q. Y. Meng, and W. Zhao, Effects of Stone–Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: A first principle study, Surf. Sci. , 2011, 605(9-10): 930
doi: 10.1016/j.susc.2011.02.006
23 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. , 1996, 77(18): 3865
doi: 10.1103/PhysRevLett.77.3865
24 B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. , 2000, 113(18): 7756
doi: 10.1063/1.1316015
25 P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: University of Ontario Press, 1999
doi: 10.1017/CBO9780511605819
26 E. Durgun, S. Dag, V. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B , 2003, 67(20): 201401
doi: 10.1103/PhysRevB.67.201401
27 X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. , 1994, 72(12): 1878
doi: 10.1103/PhysRevLett.72.1878
28 B. I. Yakobson, G. Samsonidze, and G. G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes, Carbon , 2000, 38(11-12): 1675
doi: 10.1016/S0008-6223(00)00093-2
29 G. G. Samsonidze, G. G. Samsonidze, and B. I. Yakobson, Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers, Comput. Mater. Sci. , 2002, 23(1-4): 62
doi: 10.1016/S0927-0256(01)00220-8
30 D. Tekleab, D. Carroll, G. Samsonidze, and B. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B , 2001, 64(3): 035419
doi: 10.1103/PhysRevB.64.035419
[1] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[2] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[3] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[4] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
[5] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[6] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[7] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[8] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[9] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[10] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[11] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[12] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[13] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[14] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[15] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed