Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13502    https://doi.org/10.1007/s11467-020-1001-5
RESEARCH ARTICLE
Mechanical properties of lateral transition metal dichalcogenide heterostructures
Sadegh Imani Yengejeh, William Wen, Yun Wang()
Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Southport 4222, Australia
 Download: PDF(1210 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transition metal dichalcogenide (TMD) monolayers attract great attention due to their specific structural, electronic and mechanical properties. The formation of their lateral heterostructures allows a new degree of flexibility in engineering electronic and optoelectronic dervices. However, the mechanical properties of the lateral heterostructures are rarely investigated. In this study, a comparative investigation on the mechanical characteristics of 1H, 1T′ and 1H/1T′ heterostructure phases of different TMD monolayers including molybdenum disulfide (MoS2) molybdenum diselenide (MoSe2), Tungsten disulfide (WS2), and Tungsten diselenide (WSe2) was conducted by means of density functional theory (DFT) calculations. Our results indicate that the impact of the lateral heterostructures has a relatively weak mechanical strength for all the TMD monolayers. The significant correlation between the mechanical properties of the TMD monolayers and their structural phases can be used to tune their stiffness of the materials. Our findings, therefore, suggest a novel strategy to manipulate the mechanical characteristics of TMDs by engineering their structural phases for their practical applications.

Keywords transition metal dichalcogenide      lateral heterostructures      mechanical properties      in-plane stiffness tensor      density functional theory     
Corresponding Author(s): Yun Wang   
Just Accepted Date: 27 September 2020   Issue Date: 23 October 2020
 Cite this article:   
Sadegh Imani Yengejeh,William Wen,Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1001-5
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13502
1 M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
2 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
3 S. A. Kazemi and Y. Wang, Super strong 2D titanium carbide MXene-based materials: A theoretical prediction, J. Phys.: Condens. Matter 32(11), 11LT01 (2020)
https://doi.org/10.1088/1361-648X/ab5bd8
4 Y. Kim, Y. Jhon, J. Park, C. Kim, S. Lee, and Y. Jhon, Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2, Sci. Rep. 6(1), 21405 (2016)
https://doi.org/10.1038/srep21405
5 W. Wei, Y. Dai, C. Niu, and B. Huang, Controlling the electronic structures and properties of in-plane transitionmetal dichalcogenides quantum wells, Sci. Rep. 5(1), 17578 (2015)
https://doi.org/10.1038/srep17578
6 K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
https://doi.org/10.1038/nmat3505
7 L. Oakes, R. Carter, T. Hanken, A. P. Cohn, K. Share, B. Schmidt, and C. L. Pint, Interface strain in vertically stacked two-dimensional heterostructured carbon- MoS2 nanosheets controls electrochemical reactivity, Nat. Commun. 7(1), 11796 (2016)
https://doi.org/10.1038/ncomms11796
8 X. Zhang, J. Grajal, J. L. Vazquez-Roy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou, Y. Lin, P. C. Shen, X. Ji, X. Ling, A. Zubair, Y. Zhang, H. Wang, M. Dubey, J. Kong, M. Dresselhaus, and T. Palacios, Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting, Nature 566(7744), 368 (2019)
https://doi.org/10.1038/s41586-019-0892-1
9 J. Wan, Y. Hao, Y. Shi, Y. X. Song, H. J. Yan, J. Zheng, R. Wen, and L. J. Wan, Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries, Nat. Commun. 10(1), 3265 (2019)
https://doi.org/10.1038/s41467-019-11197-7
10 L. Li, J. Chen, K. Wu, C. Cao, S. Shi, and J. Cui, The stability of metallic MoS2 nanosheets and their property change by annealing, Nanomaterials (Basel) 9(10), 1366 (2019)
https://doi.org/10.3390/nano9101366
11 M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)
https://doi.org/10.1021/jp4076355
12 A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
13 W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
14 W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)
https://doi.org/10.1038/nnano.2013.219
15 L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
16 S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers, Nano Lett. 14(6), 3185 (2014)
https://doi.org/10.1021/nl500515q
17 G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2, ACS Nano 6(8), 7311 (2012)
https://doi.org/10.1021/nn302422x
18 Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-tometallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)
https://doi.org/10.1038/nnano.2014.64
19 C. H. Naylor, W. M. Parkin, Z. L. Gao, J. Berry, S. S. Zhou, Q. C. Zhang, J. B. McClimon, L. Z. Tan, C. E. Kehayias, M. Q. Zhao, R. S. Gona, R. W. Carpick, A. M. Rappe, D. J. Srolovitz, M. Drndic, and A. T. C. Johnson, Synthesis and physical properties of phaseengineered transition metal dichalcogenide monolayer heterostructures, ACS Nano 11(9), 8619 (2017)
https://doi.org/10.1021/acsnano.7b03828
20 S. Imani Yengejeh, J. Liu, S. A. Kazemi, W. Wen, and Y. Wang, Effect of structural phases on mechanical properties of molybdenum disulfide, ACS Omega 5(11), 5994 (2020)
https://doi.org/10.1021/acsomega.9b04360
21 J. W. Jiang and Y. P. Zhou, Parameterization of Stillinger–Weber potential for two-dimensional atomic crystals, IntechOpen, 2017
https://doi.org/10.5772/intechopen.71929
22 J. W. Jiang, Misfit strain-induced buckling for transitionmetal dichalcogenide lateral heterostructures: A molecular dynamics study, Acta Mechanica Solida Sinica 32(1), 17 (2019)
https://doi.org/10.1007/s10338-018-0049-z
23 G. Kresse and J. Hafner, Ab initiomolecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
https://doi.org/10.1103/PhysRevB.48.13115
24 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
25 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
26 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
27 J. Klimeš and A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J. Chem. Phys. 137(12), 120901 (2012)
https://doi.org/10.1063/1.4754130
28 Y. Cho, W. J. Cho, I. S. Youn, G. Lee, N. J. Singh, and K. S. Kim, Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems, Acc. Chem. Res. 47(11), 3321 (2014)
https://doi.org/10.1021/ar400326q
29 V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)
https://doi.org/10.1021/acs.jpcc.7b02582
30 W. Cui, S. Xu, B. Yan, Z. Guo, Q. Xu, B. G. Sumpter, J. Huang, S. Yin, H. Zhao, and Y. Wang, Triphasic 2D materials by vertically stacking laterally heterostructured 2H‐/1T′‐MoS2 on graphene for enhanced photoresponse, Adv. Electron. Mater. 3(7), 1700024 (2017)
https://doi.org/10.1002/aelm.201700024
31 N. Wakabayashi, H. Smith, and R. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)
https://doi.org/10.1103/PhysRevB.12.659
32 J. Pei, J. Yang, T. Yildirim, H. Zhang, and Y. Lu, Many‐body complexes in 2D semiconductors, Adv. Mater. 31(2), 1706945 (2019)
https://doi.org/10.1002/adma.201706945
33 A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)
https://doi.org/10.1103/PhysRevB.84.155413
34 B. Schönfeld, J. Huang, and S. Moss, Anisotropic meansquare displacements (MSD) in single-crystals of 2H- and 3R-MoS2, Acta Crystallogr. B 39(4), 404 (1983)
https://doi.org/10.1107/S0108768183002645
35 R. G. Dickinson and L. Pauling, The crystal structure of molybdenite, J. Am. Chem. Soc. 45(6), 1466 (1923)
https://doi.org/10.1021/ja01659a020
36 F. P. Novais Antunes, V. S. Vaiss, S. R. Tavares, R. B. Capaz, and A. A. Leitão, Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study, Comput. Mater. Sci. 152, 146 (2018)
https://doi.org/10.1016/j.commatsci.2018.05.045
37 Q. Tang and D. E. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization, Chem. Mater. 27(10), 3743 (2015)
https://doi.org/10.1021/acs.chemmater.5b00986
38 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
39 Y. Wang, H. M. Zhang, P. R. Liu, X. D. Yao, and H. J. Zhao, Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction, RSC Advances 3(23), 8777 (2013)
https://doi.org/10.1039/c3ra40239h
40 P. Johari and V. B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains, ACS Nano 6(6), 5449 (2012)
https://doi.org/10.1021/nn301320r
41 Y. Liu, V. Wang, M. Xia, and S. Zhang, First-principles study on structural, thermal, mechanical and dynamic stability of T′-MoS2, J. Phys.: Condens. Matter 29(9), 095702 (2017)
https://doi.org/10.1088/1361-648X/aa5213
42 B. Pal, A. Singh, S. G, P. Mahale, A. Kumar, S. Thirupathaiah, H. Sezen, M. Amati, L. Gregoratti, U. V. Waghmare, and D. D. Sarma, Chemically exfoliated MoS2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase, Phys. Rev. B 96(19), 195426 (2017)
https://doi.org/10.1103/PhysRevB.96.195426
43 M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, 1954
44 K. A. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
https://doi.org/10.1021/jz3012436
[1] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[2] Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu. Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability[J]. Front. Phys. , 2021, 16(3): 33504-.
[3] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[4] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[5] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[6] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[7] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[8] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[9] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[10] Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes[J]. Front. Phys. , 2019, 14(1): 13401-.
[11] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[12] Zi-Wu Wang, Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides[J]. Front. Phys. , 2018, 13(4): 137305-.
[13] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[14] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[15] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed