|
|
Mechanical properties of lateral transition metal dichalcogenide heterostructures |
Sadegh Imani Yengejeh, William Wen, Yun Wang( ) |
Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Southport 4222, Australia |
|
|
Abstract Transition metal dichalcogenide (TMD) monolayers attract great attention due to their specific structural, electronic and mechanical properties. The formation of their lateral heterostructures allows a new degree of flexibility in engineering electronic and optoelectronic dervices. However, the mechanical properties of the lateral heterostructures are rarely investigated. In this study, a comparative investigation on the mechanical characteristics of 1H, 1T′ and 1H/1T′ heterostructure phases of different TMD monolayers including molybdenum disulfide (MoS2) molybdenum diselenide (MoSe2), Tungsten disulfide (WS2), and Tungsten diselenide (WSe2) was conducted by means of density functional theory (DFT) calculations. Our results indicate that the impact of the lateral heterostructures has a relatively weak mechanical strength for all the TMD monolayers. The significant correlation between the mechanical properties of the TMD monolayers and their structural phases can be used to tune their stiffness of the materials. Our findings, therefore, suggest a novel strategy to manipulate the mechanical characteristics of TMDs by engineering their structural phases for their practical applications.
|
Keywords
transition metal dichalcogenide
lateral heterostructures
mechanical properties
in-plane stiffness tensor
density functional theory
|
Corresponding Author(s):
Yun Wang
|
Just Accepted Date: 27 September 2020
Issue Date: 23 October 2020
|
|
1 |
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
|
2 |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
|
3 |
S. A. Kazemi and Y. Wang, Super strong 2D titanium carbide MXene-based materials: A theoretical prediction, J. Phys.: Condens. Matter 32(11), 11LT01 (2020)
https://doi.org/10.1088/1361-648X/ab5bd8
|
4 |
Y. Kim, Y. Jhon, J. Park, C. Kim, S. Lee, and Y. Jhon, Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2, Sci. Rep. 6(1), 21405 (2016)
https://doi.org/10.1038/srep21405
|
5 |
W. Wei, Y. Dai, C. Niu, and B. Huang, Controlling the electronic structures and properties of in-plane transitionmetal dichalcogenides quantum wells, Sci. Rep. 5(1), 17578 (2015)
https://doi.org/10.1038/srep17578
|
6 |
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
https://doi.org/10.1038/nmat3505
|
7 |
L. Oakes, R. Carter, T. Hanken, A. P. Cohn, K. Share, B. Schmidt, and C. L. Pint, Interface strain in vertically stacked two-dimensional heterostructured carbon- MoS2 nanosheets controls electrochemical reactivity, Nat. Commun. 7(1), 11796 (2016)
https://doi.org/10.1038/ncomms11796
|
8 |
X. Zhang, J. Grajal, J. L. Vazquez-Roy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou, Y. Lin, P. C. Shen, X. Ji, X. Ling, A. Zubair, Y. Zhang, H. Wang, M. Dubey, J. Kong, M. Dresselhaus, and T. Palacios, Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting, Nature 566(7744), 368 (2019)
https://doi.org/10.1038/s41586-019-0892-1
|
9 |
J. Wan, Y. Hao, Y. Shi, Y. X. Song, H. J. Yan, J. Zheng, R. Wen, and L. J. Wan, Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries, Nat. Commun. 10(1), 3265 (2019)
https://doi.org/10.1038/s41467-019-11197-7
|
10 |
L. Li, J. Chen, K. Wu, C. Cao, S. Shi, and J. Cui, The stability of metallic MoS2 nanosheets and their property change by annealing, Nanomaterials (Basel) 9(10), 1366 (2019)
https://doi.org/10.3390/nano9101366
|
11 |
M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)
https://doi.org/10.1021/jp4076355
|
12 |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
|
13 |
W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
|
14 |
W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)
https://doi.org/10.1038/nnano.2013.219
|
15 |
L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
|
16 |
S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers, Nano Lett. 14(6), 3185 (2014)
https://doi.org/10.1021/nl500515q
|
17 |
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2, ACS Nano 6(8), 7311 (2012)
https://doi.org/10.1021/nn302422x
|
18 |
Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-tometallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)
https://doi.org/10.1038/nnano.2014.64
|
19 |
C. H. Naylor, W. M. Parkin, Z. L. Gao, J. Berry, S. S. Zhou, Q. C. Zhang, J. B. McClimon, L. Z. Tan, C. E. Kehayias, M. Q. Zhao, R. S. Gona, R. W. Carpick, A. M. Rappe, D. J. Srolovitz, M. Drndic, and A. T. C. Johnson, Synthesis and physical properties of phaseengineered transition metal dichalcogenide monolayer heterostructures, ACS Nano 11(9), 8619 (2017)
https://doi.org/10.1021/acsnano.7b03828
|
20 |
S. Imani Yengejeh, J. Liu, S. A. Kazemi, W. Wen, and Y. Wang, Effect of structural phases on mechanical properties of molybdenum disulfide, ACS Omega 5(11), 5994 (2020)
https://doi.org/10.1021/acsomega.9b04360
|
21 |
J. W. Jiang and Y. P. Zhou, Parameterization of Stillinger–Weber potential for two-dimensional atomic crystals, IntechOpen, 2017
https://doi.org/10.5772/intechopen.71929
|
22 |
J. W. Jiang, Misfit strain-induced buckling for transitionmetal dichalcogenide lateral heterostructures: A molecular dynamics study, Acta Mechanica Solida Sinica 32(1), 17 (2019)
https://doi.org/10.1007/s10338-018-0049-z
|
23 |
G. Kresse and J. Hafner, Ab initiomolecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
https://doi.org/10.1103/PhysRevB.48.13115
|
24 |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
25 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
26 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
27 |
J. Klimeš and A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J. Chem. Phys. 137(12), 120901 (2012)
https://doi.org/10.1063/1.4754130
|
28 |
Y. Cho, W. J. Cho, I. S. Youn, G. Lee, N. J. Singh, and K. S. Kim, Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems, Acc. Chem. Res. 47(11), 3321 (2014)
https://doi.org/10.1021/ar400326q
|
29 |
V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)
https://doi.org/10.1021/acs.jpcc.7b02582
|
30 |
W. Cui, S. Xu, B. Yan, Z. Guo, Q. Xu, B. G. Sumpter, J. Huang, S. Yin, H. Zhao, and Y. Wang, Triphasic 2D materials by vertically stacking laterally heterostructured 2H‐/1T′‐MoS2 on graphene for enhanced photoresponse, Adv. Electron. Mater. 3(7), 1700024 (2017)
https://doi.org/10.1002/aelm.201700024
|
31 |
N. Wakabayashi, H. Smith, and R. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)
https://doi.org/10.1103/PhysRevB.12.659
|
32 |
J. Pei, J. Yang, T. Yildirim, H. Zhang, and Y. Lu, Many‐body complexes in 2D semiconductors, Adv. Mater. 31(2), 1706945 (2019)
https://doi.org/10.1002/adma.201706945
|
33 |
A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)
https://doi.org/10.1103/PhysRevB.84.155413
|
34 |
B. Schönfeld, J. Huang, and S. Moss, Anisotropic meansquare displacements (MSD) in single-crystals of 2H- and 3R-MoS2, Acta Crystallogr. B 39(4), 404 (1983)
https://doi.org/10.1107/S0108768183002645
|
35 |
R. G. Dickinson and L. Pauling, The crystal structure of molybdenite, J. Am. Chem. Soc. 45(6), 1466 (1923)
https://doi.org/10.1021/ja01659a020
|
36 |
F. P. Novais Antunes, V. S. Vaiss, S. R. Tavares, R. B. Capaz, and A. A. Leitão, Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study, Comput. Mater. Sci. 152, 146 (2018)
https://doi.org/10.1016/j.commatsci.2018.05.045
|
37 |
Q. Tang and D. E. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization, Chem. Mater. 27(10), 3743 (2015)
https://doi.org/10.1021/acs.chemmater.5b00986
|
38 |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
|
39 |
Y. Wang, H. M. Zhang, P. R. Liu, X. D. Yao, and H. J. Zhao, Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction, RSC Advances 3(23), 8777 (2013)
https://doi.org/10.1039/c3ra40239h
|
40 |
P. Johari and V. B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains, ACS Nano 6(6), 5449 (2012)
https://doi.org/10.1021/nn301320r
|
41 |
Y. Liu, V. Wang, M. Xia, and S. Zhang, First-principles study on structural, thermal, mechanical and dynamic stability of T′-MoS2, J. Phys.: Condens. Matter 29(9), 095702 (2017)
https://doi.org/10.1088/1361-648X/aa5213
|
42 |
B. Pal, A. Singh, S. G, P. Mahale, A. Kumar, S. Thirupathaiah, H. Sezen, M. Amati, L. Gregoratti, U. V. Waghmare, and D. D. Sarma, Chemically exfoliated MoS2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase, Phys. Rev. B 96(19), 195426 (2017)
https://doi.org/10.1103/PhysRevB.96.195426
|
43 |
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, 1954
|
44 |
K. A. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
https://doi.org/10.1021/jz3012436
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|