Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (4) : 43203    https://doi.org/10.1007/s11467-021-1054-0
TOPICAL REVIEW
Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures
Zhaobo Zhou, Shijun Yuan(), Jinlan Wang()
School of Physics, Southeast University, Nanjing 211189, China
 Download: PDF(1819 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.

Keywords two-dimensional heterostructures      direct Z-scheme      photocatalyst      density functional theory     
Corresponding Author(s): Shijun Yuan,Jinlan Wang   
Issue Date: 15 April 2021
 Cite this article:   
Zhaobo Zhou,Shijun Yuan,Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1054-0
https://academic.hep.com.cn/fop/EN/Y2021/V16/I4/43203
1 J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)
https://doi.org/10.1002/adma.201704548
2 J. D. Xiao and H. L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res. 52(2), 356 (2019)
https://doi.org/10.1021/acs.accounts.8b00521
3 T. Su, Z. Liu, Y. Liang, Z. Qin, J. Liu, and Y. Huang, Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation, Catal. Commun. 18, 93 (2012)
https://doi.org/10.1016/j.catcom.2011.11.027
4 Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, and Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination, Chem. Rec. 19(5), 873 (2019)
https://doi.org/10.1002/tcr.201800153
5 B. Luo, G. Liu, and L. Wang, Recent advances in 2D materials for photocatalysis, Nanoscale 8(13), 6904 (2016)
https://doi.org/10.1039/C6NR00546B
6 Y. Huang, H. Xu, H. Yang, Y. Lin, H. Liu, and Y. Tong, Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles, ACS Sustain. Chem. & Eng. 6(2), 2751 (2018)
https://doi.org/10.1021/acssuschemeng.7b04435
7 T. Su, R. Peng, Z. D. Hood, M. Naguib, I. N. Ivanov, J. K. Keum, Z. Qin, Z. Guo, and Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution, ChemSusChem 11(4), 688 (2018)
https://doi.org/10.1002/cssc.201702317
8 X. Ma, D. Jiang, P. Xiao, Y. Jin, S. Meng, and M. Chen, 2D/2D heterojunctions of WO3 nanosheet/K+Ca2Nb3O−10 ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis, Catal. Sci. Technol. 7(16), 3481 (2017)
https://doi.org/10.1039/C7CY00976C
9 Y. R. Lv, R. K. He, Z. Y. Chen, X. Li, and Y. H. Xu, Fabrication of hierarchical copper sulfide/bismuth tungstate p–n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate, J. Colloid Interface Sci. 560, 293 (2020)
https://doi.org/10.1016/j.jcis.2019.10.064
10 Y. Bao and K. Chen, Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism, Appl. Surf. Sci. 437, 51 (2018)
https://doi.org/10.1016/j.apsusc.2017.12.075
11 L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)
https://doi.org/10.1016/j.apsusc.2017.10.172
12 C. F. Fu, R. Zhang, Q. Luo, X. Li, and J. Yang, Construction of direct Z-Scheme photocatalysts for overall water splitting using two-dimensional van der waals heterojunctions of metal dichalcogenides, J. Comput. Chem. 40(9), 980 (2019)
https://doi.org/10.1002/jcc.25540
13 B. Wang, X. Wang, H. Yuan, T. Zhou, J. Chang, and H. Chen, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction, Int. J. Hydrogen Energy 45(4), 2785 (2020)
https://doi.org/10.1016/j.ijhydene.2019.11.178
14 P. Xia, B. Zhu, B. Cheng, J. Yu, and J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. & Eng. 6(1), 965 (2018)
https://doi.org/10.1021/acssuschemeng.7b03289
15 Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)
16 Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, and L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting, Nano Energy 59, 537 (2019)
https://doi.org/10.1016/j.nanoen.2019.03.004
17 B. Wang, H. Yuan, J. Chang, X. Chen, and H. Chen, Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting, Appl. Surf. Sci. 485, 375 (2019)
https://doi.org/10.1016/j.apsusc.2019.03.344
18 J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)
https://doi.org/10.1002/adma.201601694
19 S. Shen, and S. S. Mao, Nanostructure designs for effective solar-to-hydrogen conversion, Nanophotonics 1(1), 31 (2012)
https://doi.org/10.1515/nanoph-2012-0010
20 B. Chen, P. Li, S. Zhang, W. Zhang, X. Dong, F. Xi, and J. Liu, The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets, J. Colloid Interface Sci. 478, 263 (2016)
https://doi.org/10.1016/j.jcis.2016.05.053
21 B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, and M. Ao, Design and synthesis of robust Z-scheme ZnS-SnS2 n–n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation, J. Hazard. Mater. 392, 122345 (2020)
https://doi.org/10.1016/j.jhazmat.2020.122345
22 Y. Liu, P. Lv, W. Zhou, and J. Hong, Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting, J. Phys. Chem. C 124(18), 9696 (2020)
https://doi.org/10.1021/acs.jpcc.0c00321
23 T. Su, Z. Qin, H. Ji, and Z. Wu, An overview of photocatalysis facilitated by 2D heterojunctions, Nanotechnology 30(50), 502002 (2019)
https://doi.org/10.1088/1361-6528/ab3f15
24 X. Chen, R. Hu, and F. Sun, Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability, J. Renew. Sustain. Energy 10(5), 054301 (2018)
https://doi.org/10.1063/1.5044470
25 J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhou, and Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347(6225), 970 (2015)
https://doi.org/10.1126/science.aaa3145
26 X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility, Appl. Catal. B 217, 275 (2017)
27 D. Er, H. Ye, N. C. Frey, H. Kumar, J. Lou, and V. B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides, Nano Lett. 18(6), 3943 (2018)
https://doi.org/10.1021/acs.nanolett.8b01335
28 A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
29 P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)
https://doi.org/10.1038/s41565-018-0193-0
30 S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, and A. C. Riis-Jensen, The computational 2D material database: High-throughput modeling and discovery of atomically thin crystals, 2D Mater. 5, 042022 (2018)
https://doi.org/10.1088/2053-1583/aacfc1
31 K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)
https://doi.org/10.1038/nnano.2013.206
32 M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13(8), 3664 (2013)
https://doi.org/10.1021/nl401544y
33 Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)
https://doi.org/10.1039/C9TA06407A
34 K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal. 3(7), 1486 (2013)
https://doi.org/10.1021/cs4002089
35 W. Hu and J. Yang, First-principles study of twodimensional van der Waals heterojunctions, Comput. Mater. Sci. 112, 518 (2016)
https://doi.org/10.1016/j.commatsci.2015.06.033
36 J. Liu and E. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT, J. Phys. Chem. C 121(46), 25827 (2017)
https://doi.org/10.1021/acs.jpcc.7b07914
37 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
38 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 124(21), 219906 (2006) (J. Chem. Phys. 118, 8207 (2003))
https://doi.org/10.1063/1.2204597
39 A. Kahn, Fermi level, work function and vacuum level, Mater. Horiz. 3(1), 7 (2016)
https://doi.org/10.1039/C5MH00160A
40 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
41 S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
42 M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
43 M. Jourshabani, B. K. Lee, and Z. Shariatinia, From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges, Appl. Catal. B 276, 119157 (2020)
https://doi.org/10.1016/j.apcatb.2020.119157
44 P. Zhou, J. Yu, and M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)
https://doi.org/10.1002/adma.201400288
45 Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar water-splitting, Nat. Photonics 6(8), 511 (2012)
https://doi.org/10.1038/nphoton.2012.175
46 S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting — a critical review, Energy Environ. Sci. 8(3), 731 (2015)
https://doi.org/10.1039/C4EE03271C
47 J. K. Hyun, S. Zhang, and L. J. Lauhon, Nanowire heterostructures, Annu. Rev. Mater. Res. 43(1), 451 (2013)
https://doi.org/10.1146/annurev-matsci-071312-121659
48 J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)
https://doi.org/10.1016/j.apcatb.2018.11.011
49 T. Su, Q. Shao, Z. Qin, Z. Guo, and Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal. 8(3), 2253 (2018)
https://doi.org/10.1021/acscatal.7b03437
50 Q. L. Xu, L. Y. Zhang, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 21(10), 1042 (2018)
https://doi.org/10.1016/j.mattod.2018.04.008
51 X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A 3(6), 2485 (2015)
https://doi.org/10.1039/C4TA04461D
52 X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductorbased photocatalytic hydrogen generation, Chem. Rev. 110(11), 6503 (2010)
https://doi.org/10.1021/cr1001645
53 Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, and J. Chen, Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges, Angew. Chem. Int. Ed. 57(26), 7610 (2018)
https://doi.org/10.1002/anie.201710509
54 K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, and G. Zhang, A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency, Nanoscale 12(33), 17281 (2020)
https://doi.org/10.1039/D0NR02286A
55 I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez, N. Inoglu, J. Kitchin, T. Jaramillo, J. Norskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3(7), 1159 (2011)
https://doi.org/10.1002/cctc.201000397
56 R. Zhang, L. Zhang, Q. Zheng, P. Gao, J. Zhao, and J. Yang, Direct Z-scheme water splitting photocatalyst based on two-dimensional van der Waals heterostructures, J. Phys. Chem. Lett. 9(18), 5419 (2018)
https://doi.org/10.1021/acs.jpclett.8b02369
57 X. Niu, X. Bai, Z. Zhou, and J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations, ACS Catal. 10(3), 1976 (2020)
https://doi.org/10.1021/acscatal.9b04753
58 C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol. 13(11), 994 (2018)
https://doi.org/10.1038/s41565-018-0298-5
59 R. Long and O. V. Prezhdo, Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction, Nano Lett. 16(3), 1996 (2016)
https://doi.org/10.1021/acs.nanolett.5b05264
[1] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[2] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[3] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[4] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[5] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[6] Xin Li, Peng Wang, Ya-Qiang Wu, Zhen-Hua Liu, Qian-Qian Zhang, Ting-Ting Zhang, Ze-Yan Wang, Yuan-Yuan Liu, Zhao-Ke Zheng, Bai-Biao Huang. ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production[J]. Front. Phys. , 2020, 15(2): 23604-.
[7] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[8] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[9] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[10] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[11] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[12] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[13] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[14] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
[15] Juan Ren,Ning-Chao Zhang,Peng Wang,Chao Ning,Hong Zhang,Xiao-Juan Peng. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs[J]. Front. Phys. , 2016, 11(2): 118101-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed