|
|
Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures |
Zhaobo Zhou, Shijun Yuan( ), Jinlan Wang( ) |
School of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.
|
Keywords
two-dimensional heterostructures
direct Z-scheme
photocatalyst
density functional theory
|
Corresponding Author(s):
Shijun Yuan,Jinlan Wang
|
Issue Date: 15 April 2021
|
|
1 |
J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)
https://doi.org/10.1002/adma.201704548
|
2 |
J. D. Xiao and H. L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res. 52(2), 356 (2019)
https://doi.org/10.1021/acs.accounts.8b00521
|
3 |
T. Su, Z. Liu, Y. Liang, Z. Qin, J. Liu, and Y. Huang, Preparation of PbYO composite photocatalysts for degradation of methyl orange under visible-light irradiation, Catal. Commun. 18, 93 (2012)
https://doi.org/10.1016/j.catcom.2011.11.027
|
4 |
Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, and Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination, Chem. Rec. 19(5), 873 (2019)
https://doi.org/10.1002/tcr.201800153
|
5 |
B. Luo, G. Liu, and L. Wang, Recent advances in 2D materials for photocatalysis, Nanoscale 8(13), 6904 (2016)
https://doi.org/10.1039/C6NR00546B
|
6 |
Y. Huang, H. Xu, H. Yang, Y. Lin, H. Liu, and Y. Tong, Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles, ACS Sustain. Chem. & Eng. 6(2), 2751 (2018)
https://doi.org/10.1021/acssuschemeng.7b04435
|
7 |
T. Su, R. Peng, Z. D. Hood, M. Naguib, I. N. Ivanov, J. K. Keum, Z. Qin, Z. Guo, and Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution, ChemSusChem 11(4), 688 (2018)
https://doi.org/10.1002/cssc.201702317
|
8 |
X. Ma, D. Jiang, P. Xiao, Y. Jin, S. Meng, and M. Chen, 2D/2D heterojunctions of WO3 nanosheet/K+Ca2Nb3O−10 ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis, Catal. Sci. Technol. 7(16), 3481 (2017)
https://doi.org/10.1039/C7CY00976C
|
9 |
Y. R. Lv, R. K. He, Z. Y. Chen, X. Li, and Y. H. Xu, Fabrication of hierarchical copper sulfide/bismuth tungstate p–n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate, J. Colloid Interface Sci. 560, 293 (2020)
https://doi.org/10.1016/j.jcis.2019.10.064
|
10 |
Y. Bao and K. Chen, Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism, Appl. Surf. Sci. 437, 51 (2018)
https://doi.org/10.1016/j.apsusc.2017.12.075
|
11 |
L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)
https://doi.org/10.1016/j.apsusc.2017.10.172
|
12 |
C. F. Fu, R. Zhang, Q. Luo, X. Li, and J. Yang, Construction of direct Z-Scheme photocatalysts for overall water splitting using two-dimensional van der waals heterojunctions of metal dichalcogenides, J. Comput. Chem. 40(9), 980 (2019)
https://doi.org/10.1002/jcc.25540
|
13 |
B. Wang, X. Wang, H. Yuan, T. Zhou, J. Chang, and H. Chen, Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction, Int. J. Hydrogen Energy 45(4), 2785 (2020)
https://doi.org/10.1016/j.ijhydene.2019.11.178
|
14 |
P. Xia, B. Zhu, B. Cheng, J. Yu, and J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. & Eng. 6(1), 965 (2018)
https://doi.org/10.1021/acssuschemeng.7b03289
|
15 |
Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)
|
16 |
Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, and L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting, Nano Energy 59, 537 (2019)
https://doi.org/10.1016/j.nanoen.2019.03.004
|
17 |
B. Wang, H. Yuan, J. Chang, X. Chen, and H. Chen, Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting, Appl. Surf. Sci. 485, 375 (2019)
https://doi.org/10.1016/j.apsusc.2019.03.344
|
18 |
J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)
https://doi.org/10.1002/adma.201601694
|
19 |
S. Shen, and S. S. Mao, Nanostructure designs for effective solar-to-hydrogen conversion, Nanophotonics 1(1), 31 (2012)
https://doi.org/10.1515/nanoph-2012-0010
|
20 |
B. Chen, P. Li, S. Zhang, W. Zhang, X. Dong, F. Xi, and J. Liu, The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets, J. Colloid Interface Sci. 478, 263 (2016)
https://doi.org/10.1016/j.jcis.2016.05.053
|
21 |
B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, and M. Ao, Design and synthesis of robust Z-scheme ZnS-SnS2 n–n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation, J. Hazard. Mater. 392, 122345 (2020)
https://doi.org/10.1016/j.jhazmat.2020.122345
|
22 |
Y. Liu, P. Lv, W. Zhou, and J. Hong, Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting, J. Phys. Chem. C 124(18), 9696 (2020)
https://doi.org/10.1021/acs.jpcc.0c00321
|
23 |
T. Su, Z. Qin, H. Ji, and Z. Wu, An overview of photocatalysis facilitated by 2D heterojunctions, Nanotechnology 30(50), 502002 (2019)
https://doi.org/10.1088/1361-6528/ab3f15
|
24 |
X. Chen, R. Hu, and F. Sun, Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability, J. Renew. Sustain. Energy 10(5), 054301 (2018)
https://doi.org/10.1063/1.5044470
|
25 |
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhou, and Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347(6225), 970 (2015)
https://doi.org/10.1126/science.aaa3145
|
26 |
X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility, Appl. Catal. B 217, 275 (2017)
|
27 |
D. Er, H. Ye, N. C. Frey, H. Kumar, J. Lou, and V. B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides, Nano Lett. 18(6), 3943 (2018)
https://doi.org/10.1021/acs.nanolett.8b01335
|
28 |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
|
29 |
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)
https://doi.org/10.1038/s41565-018-0193-0
|
30 |
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, and A. C. Riis-Jensen, The computational 2D material database: High-throughput modeling and discovery of atomically thin crystals, 2D Mater. 5, 042022 (2018)
https://doi.org/10.1088/2053-1583/aacfc1
|
31 |
K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)
https://doi.org/10.1038/nnano.2013.206
|
32 |
M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13(8), 3664 (2013)
https://doi.org/10.1021/nl401544y
|
33 |
Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)
https://doi.org/10.1039/C9TA06407A
|
34 |
K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal. 3(7), 1486 (2013)
https://doi.org/10.1021/cs4002089
|
35 |
W. Hu and J. Yang, First-principles study of twodimensional van der Waals heterojunctions, Comput. Mater. Sci. 112, 518 (2016)
https://doi.org/10.1016/j.commatsci.2015.06.033
|
36 |
J. Liu and E. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT, J. Phys. Chem. C 121(46), 25827 (2017)
https://doi.org/10.1021/acs.jpcc.7b07914
|
37 |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
38 |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 124(21), 219906 (2006) (J. Chem. Phys. 118, 8207 (2003))
https://doi.org/10.1063/1.2204597
|
39 |
A. Kahn, Fermi level, work function and vacuum level, Mater. Horiz. 3(1), 7 (2016)
https://doi.org/10.1039/C5MH00160A
|
40 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
41 |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
|
42 |
M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
|
43 |
M. Jourshabani, B. K. Lee, and Z. Shariatinia, From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges, Appl. Catal. B 276, 119157 (2020)
https://doi.org/10.1016/j.apcatb.2020.119157
|
44 |
P. Zhou, J. Yu, and M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)
https://doi.org/10.1002/adma.201400288
|
45 |
Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar water-splitting, Nat. Photonics 6(8), 511 (2012)
https://doi.org/10.1038/nphoton.2012.175
|
46 |
S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting — a critical review, Energy Environ. Sci. 8(3), 731 (2015)
https://doi.org/10.1039/C4EE03271C
|
47 |
J. K. Hyun, S. Zhang, and L. J. Lauhon, Nanowire heterostructures, Annu. Rev. Mater. Res. 43(1), 451 (2013)
https://doi.org/10.1146/annurev-matsci-071312-121659
|
48 |
J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)
https://doi.org/10.1016/j.apcatb.2018.11.011
|
49 |
T. Su, Q. Shao, Z. Qin, Z. Guo, and Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal. 8(3), 2253 (2018)
https://doi.org/10.1021/acscatal.7b03437
|
50 |
Q. L. Xu, L. Y. Zhang, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, and M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 21(10), 1042 (2018)
https://doi.org/10.1016/j.mattod.2018.04.008
|
51 |
X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A 3(6), 2485 (2015)
https://doi.org/10.1039/C4TA04461D
|
52 |
X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductorbased photocatalytic hydrogen generation, Chem. Rev. 110(11), 6503 (2010)
https://doi.org/10.1021/cr1001645
|
53 |
Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, and J. Chen, Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges, Angew. Chem. Int. Ed. 57(26), 7610 (2018)
https://doi.org/10.1002/anie.201710509
|
54 |
K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, and G. Zhang, A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency, Nanoscale 12(33), 17281 (2020)
https://doi.org/10.1039/D0NR02286A
|
55 |
I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez, N. Inoglu, J. Kitchin, T. Jaramillo, J. Norskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3(7), 1159 (2011)
https://doi.org/10.1002/cctc.201000397
|
56 |
R. Zhang, L. Zhang, Q. Zheng, P. Gao, J. Zhao, and J. Yang, Direct Z-scheme water splitting photocatalyst based on two-dimensional van der Waals heterostructures, J. Phys. Chem. Lett. 9(18), 5419 (2018)
https://doi.org/10.1021/acs.jpclett.8b02369
|
57 |
X. Niu, X. Bai, Z. Zhou, and J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations, ACS Catal. 10(3), 1976 (2020)
https://doi.org/10.1021/acscatal.9b04753
|
58 |
C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol. 13(11), 994 (2018)
https://doi.org/10.1038/s41565-018-0298-5
|
59 |
R. Long and O. V. Prezhdo, Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction, Nano Lett. 16(3), 1996 (2016)
https://doi.org/10.1021/acs.nanolett.5b05264
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|