|
|
Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations |
Huaze Shen1,2, Mohan Chen2, Zhaoru Sun2, Limei Xu1, Enge Wang1( ), Xifan Wu2,3( ) |
1. International Centre for Quantum Materials and School of Physics, Peking University, Beijing 100871, China 2. Department of Physics, Temple University, Philadelphia, PA 19122, USA 3. Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA |
|
|
Abstract Based on ab initio molecular dynamics simulations and density functional theory, we performed a systematic theoretical study to elucidate the correlation between the H-bonded environment and Xray emission spectra of liquid water. The spectra generated from excited water molecules embedded in an intact H-bonded environment yield broader spectral peaks and a larger spectral range than the spectra generated from water molecules in a broken H-bonded environment. Such differences are caused by the local electronic structures on the excited water molecules within the core-hole lifetime that evolve differently through the rearrangement of neighboring water molecules in different H-bonded environments.
|
Keywords
water
density functional theory
ab initio molecular dynamics
X-ray emission spectra
hydrogen bond
core hole
|
Corresponding Author(s):
Enge Wang
|
Issue Date: 25 September 2017
|
|
1 |
P.Gallo, K.Amann-Winkel, C. A.Angell, M. A.Anisimov, F.Caupin, C.Chakravarty, E.Lascaris, T.Loerting, A. Z.Panagiotopoulos, J.Russo, J. A.Sellberg, H. E.Stanley, H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463 (2016)
https://doi.org/10.1021/acs.chemrev.5b00750
|
2 |
L. G. M.Pettersson, R. H.Henchman, and A.Nilsson, Water – The most anomalous liquid, Chem. Rev. 116(13), 7459(2016)
https://doi.org/10.1021/acs.chemrev.6b00363
|
3 |
P.Ball, Water as an active constituent in cell biology, Chem. Rev. 108(1), 74(2008)
https://doi.org/10.1021/cr068037a
|
4 |
J. C.Palmer, F.Martelli, Y.Liu, R.Car, A. Z.Panagiotopoulos, and P. G.Debenedetti, Metastable liquidliquid transition in a molecular model of water, Nature510(7505), 385(2014)
https://doi.org/10.1038/nature13405
|
5 |
C. J.Fecko, J. D.Eaves, J. J.Loparo, A.Tokmakoff, and P. L.Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science301(5640), 1698(2003)
https://doi.org/10.1126/science.1087251
|
6 |
T.Head-Gordonand G.Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102(8), 2651(2002)
https://doi.org/10.1021/cr0006831
|
7 |
J. A.Sellberg, C.Huang, T. A.McQueen, N. D.Loh, H.Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)
https://doi.org/10.1038/nature13266
|
8 |
T.Tokushima, Y.Harada, O.Takahashi, Y.Senba, H.Ohashi, L. G. M.Pettersson, A.Nilsson, and S.Shin, High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs, Chem. Phys. Lett. 460(4–6), 387(2008)
https://doi.org/10.1016/j.cplett.2008.04.077
|
9 |
F. H.Stillinger, Water revisited, Science209(4455), 451(1980)
https://doi.org/10.1126/science.209.4455.451
|
10 |
G. E.Walrafen, Effects of equilibrium H-bond distance and angle changes on Raman intensities from water, J. Chem. Phys. 120(10), 4868(2004)
https://doi.org/10.1063/1.1640668
|
11 |
M.Vedamuthu, S.Singh, and G. W.Robinson, Properties of liquid water: Origin of the density anomalies, J. Phys. Chem. 98(9), 2222(1994)
https://doi.org/10.1021/j100060a002
|
12 |
R.Bukowski, K.Szalewicz, G. C.Groenenboom, and A.van der Avoird, Prediction of the properties of water from first principles, Science315(5816), 1249(2007)
https://doi.org/10.1126/science.1136371
|
13 |
B.Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, J. Mol. Liq. 101(1–3), 219(2002)
https://doi.org/10.1016/S0167-7322(02)00094-6
|
14 |
R.Carand M.Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471(1985)
https://doi.org/10.1103/PhysRevLett.55.2471
|
15 |
J. D.Eaves, J. J.Loparo, C. J.Fecko, S. T.Roberts, A.Tokmakoff, and P. L.Geissler, Hydrogen bonds in liquid water are broken only fleetingly, Proc. Natl. Acad. Sci. USA102(37), 13019(2005)
https://doi.org/10.1073/pnas.0505125102
|
16 |
G. S.Fanourgakis, G. K.Schenter, and S. S.Xantheas, A quantitative account of quantum effects in liquid water, J. Chem. Phys. 125(14), 141102(2006)
https://doi.org/10.1063/1.2358137
|
17 |
R.Bukowski, K.Szalewicz, G. C.Groenenboom, and A.Van Der Avoird, Polarizable interaction potential for water from coupled cluster calculations (II): Applications to dimer spectra, virial coefficients, and simulations of liquid water, J. Chem. Phys. 128(9), 094314(2008)
https://doi.org/10.1063/1.2832858
|
18 |
F.Paesani, S.Iuchi, and G. A.Voth, Quantum effects in liquid water from an ab initio-based polarizable force field, J. Chem. Phys. 127(7), 074506(2007)
https://doi.org/10.1063/1.2759484
|
19 |
Y. A.Mantz, B.Chen, and G. J.Martyna, Structural correlations and motifs in liquid water at selected temperatures: ab initio and empirical model predictions, J. Phys. Chem. B110(8), 3540(2006)
https://doi.org/10.1021/jp054789h
|
20 |
A.Nilssonand L. G. M.Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)
https://doi.org/10.1038/ncomms9998
|
21 |
J. D.Smith, C. D.Cappa, K. R.Wilson, R. C.Cohen, P. L.Geissler, and R. J.Saykally, Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water, Proc. Natl. Acad. Sci. USA102(40), 14171(2005)
https://doi.org/10.1073/pnas.0506899102
|
22 |
J. D.Bernaland R. H.Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys. 1(8), 515(1933)
https://doi.org/10.1063/1.1749327
|
23 |
A. K.Soper, The quest for the structure of water and aqueous solutions, J. Phys.: Condens. Matter9(13), 2717(1997)
https://doi.org/10.1088/0953-8984/9/13/009
|
24 |
A. K.Soper, The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa, Chem. Phys. 258(2–3), 121(2000)
https://doi.org/10.1016/S0301-0104(00)00179-8
|
25 |
S. A.Corcelliand J. L.Skinner, Infrared and Ramute HOD in liquid H2O and D2O from 10 to 90 degrees celsius, J. Phys. Chem. A109(28), 6154(2005)
https://doi.org/10.1021/jp0506540
|
26 |
T. S.Carlton, Using heat capacity and compressibility to choose among two-state models of liquid water, J. Phys. Chem. B111(47), 13398(2007)
https://doi.org/10.1021/jp074143k
|
27 |
H.Tanaka, Simple physical model of liquid water, J. Chem. Phys. 112(2), 799(2000)
https://doi.org/10.1063/1.480609
|
28 |
A.Zeidler, P. S.Salmon, H. E.Fischer, J. C.Neuefeind, J.Mike Simonson, and T. E.Markland, Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics, J. Phys.: Condens. Matter24(28), 284126(2012)
https://doi.org/10.1088/0953-8984/24/28/284126
|
29 |
J. C.Dore, M.Garawi, and M. C.Bellissent-Funel, Neutron diffraction studies of the structure of water at ambient temperatures, revisited [a review of past developments and current problems], Mol. Phys. 102(19–20), 2015(2004)
https://doi.org/10.1080/00268970412331292849
|
30 |
M. C.Bellissent-Funel, and L.Bosio, A neutron scattering study of liquid D2O under pressure and at various temperatures, J. Chem. Phys. 102(9), 3727(1995)
https://doi.org/10.1063/1.468555
|
31 |
J. C.Dore, M. A. M.Sufi, and M. C.Bellissent-Funel, Structural change in D2O water as a function of temperature: The isochoric temperature derivative function for neutron diffraction, Phys. Chem. Chem. Phys. 2(8), 1599(2000)
https://doi.org/10.1039/a909322b
|
32 |
A. K.Soper, The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure? ISRN Phys. Chem. 2013, 1 (2013)
https://doi.org/10.1155/2013/279463
|
33 |
P.Postorino, M. A.Ricci, and A. K.Soper, Water above its boiling point: Study of the temperature and density dependence of the partial pair correlation functions (I): Neutron diffraction experiment, J. Chem. Phys. 101(5), 4123(1994)
https://doi.org/10.1063/1.467462
|
34 |
K.Amann-Winkel, M. C.Bellissent-Funel, L. E.Bove, T.Loerting, A.Nilsson,A.Paciaroni, D.Schlesinger, and L.Skinner, X-ray and neutron scattering of water, Chem. Rev. 116(13), 7570(2016)
https://doi.org/10.1021/acs.chemrev.5b00663
|
35 |
L. B.Skinner,C.Huang, D.Schlesinger, L. G. M.Pettersson, A.Nilsson, and C. J.Benmore, Benchmark oxygen-oxygen pair-distribution function of ambient water from X-ray diffraction measurements with a wide Q-range, J. Chem. Phys. 138(7), 074506(2013)
https://doi.org/10.1063/1.4790861
|
36 |
J.Morganand B. E.Warren, X-ray analysis of the structure of water, J. Chem. Phys. 6(11), 666(1938)
https://doi.org/10.1063/1.1750148
|
37 |
H.Ohtaki, T.Radnai, and T.Yamaguchi, Structure of water under subcritical and supercritical conditions studied by solution X-ray diffraction, Chem. Soc. Rev. 26(1), 41(1997)
https://doi.org/10.1039/cs9972600041
|
38 |
J. M.Sorenson, G.Hura, R. M.Glaeser, and T.Head- Gordon, What can X-ray scattering tell us about the radial distribution functions of water? J. Chem. Phys. 113(20), 9149(2000)
https://doi.org/10.1063/1.1319615
|
39 |
C.Huang, T. M.Weiss, D.Nordlund, K. T.Wikfeldt, L. G. M.Pettersson, and A.Nilsson, Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle X-ray scattering, J. Chem. Phys. 133(13), 134504(2010)
https://doi.org/10.1063/1.3495974
|
40 |
F. N.KeutschandR. J.Saykally, Water clusters: Untangling the mysteries of the liquid, one molecule at a time, Proc. Natl. Acad. Sci. USA98(19), 10533(2001)
https://doi.org/10.1073/pnas.191266498
|
41 |
K. A.Tayand F.Bresme, Kinetics of hydrogen-bond rearrangements in bulk water, Phys. Chem. Chem. Phys. 11(2), 409(2009)
https://doi.org/10.1039/B813896F
|
42 |
R.Laenen, C.Rauscher, and A.Laubereau, Dynamics of local substructures in water observed by ultrafast infrared hole burning, Phys. Rev. Lett. 80(12), 2622(1998)
https://doi.org/10.1103/PhysRevLett.80.2622
|
43 |
R. H.Henchmanand S. J.Irudayam, Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, J. Phys. Chem. B114(50), 16792(2010)
https://doi.org/10.1021/jp105381s
|
44 |
H. J.Bakkerand J. L.Skinner, Vibrational spectroscopy as a probe of structure and dynamics in liquid water, Chem. Rev. 110(3), 1498(2010)
https://doi.org/10.1021/cr9001879
|
45 |
K.Ramasesha, S. T.Roberts, R. A.Nicodemus, A.Mandal, and A.Tokmakoff, Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching, J. Chem. Phys. 135(5), 054509(2011)
https://doi.org/10.1063/1.3623008
|
46 |
R.Kumar, J. R.Schmidt, and J. L.Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126(20), 204107(2007)
https://doi.org/10.1063/1.2742385
|
47 |
F.Perakis, L. D.Marco, A.Shalit, F.Tang, Z. R.Kann, T. D.Kühne, R.Torre, M.Bonn, and Y.Nagata, Vibrational spectroscopy and dynamics of water, Chem. Rev.116(13), 7590(2016)
https://doi.org/10.1021/acs.chemrev.5b00640
|
48 |
T.Fransson, Y.Harada, N.Kosugi, N. A.Besley, B.Winter, J. J.Rehr, L. G. M.Pettersson, and A.Nilsson, X-ray and electron spectroscopy of water, Chem. Rev. 116(13), 7551(2016)
https://doi.org/10.1021/acs.chemrev.5b00672
|
49 |
Ph.Wernet, D.Nordlund, U.Bergmann, M.Cavalleri, M.Odelius, H.Ogasawara, L. Å.Näslund, T. K.Hirsch, L.Ojamäe, P.Glatzel, L. G. M.Pettersson, and A.Nilsson, The structure of the first coordination shell in liquid water, Science304(5673), 995(2004)
https://doi.org/10.1126/science.1096205
|
50 |
J. A.Sellberg, S.Kaya, V. H.Segtnan, C.Chen, T.Tyliszczak, H.Ogasawara, D.Nordlund, L. G. M.Pettersson, and A.Nilsson, Comparison of X-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, J. Chem. Phys. 141(3), 034507(2014)
https://doi.org/10.1063/1.4890035
|
51 |
B.Hetényi, F.De Angelis, P.Giannozzi, and R.Car, Calculation of near-edge X-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water, J. Chem. Phys. 120(18), 8632(2004)
https://doi.org/10.1063/1.1703526
|
52 |
T.Head-Gordonand M. E.Johnson, Tetrahedral structure or chains for liquid water, Proc. Natl. Acad. Sci. USA103(21), 7973(2006)
https://doi.org/10.1073/pnas.0510593103
|
53 |
L.Kong, X.Wu, and R.Car, Roles of quantum nuclei and inhomogeneous screening in the X-ray absorption spectra of water and ice, Phys. Rev. B86(13), 134203(2012)
https://doi.org/10.1103/PhysRevB.86.134203
|
54 |
J. D.Smith, C. D.Cappa, B. M.Messer, W. S.Drisdell, R. C.Cohen, and R. J.Saykally, Probing the local structure of liquid water by X-ray absorption spectroscopy, J. Phys. Chem. B110(40), 20038(2006)
https://doi.org/10.1021/jp063661c
|
55 |
W.Chen, X.Wu, and R.Car, X-ray absorption signatures of the molecular environment in water and ice, Phys. Rev. Lett. 105(1), 017802(2010)
https://doi.org/10.1103/PhysRevLett.105.017802
|
56 |
D.Prendergastand G.Galli, X-ray absorption spectra of water from first principles calculations, Phys. Rev. Lett. 96(21), 215502(2006)
https://doi.org/10.1103/PhysRevLett.96.215502
|
57 |
T.Fransson, I.Zhovtobriukh, S.Coriani, K. T.Wikfeldt, P.Norman, and L. G. M.Pettersson, Requirements of first-principles calculations of X-ray absorption spectra of liquid water, Phys. Chem. Chem. Phys. 18(1), 566(2016)
https://doi.org/10.1039/C5CP03919C
|
58 |
A.Nilsson, D.Nordlund, I.Waluyo, N.Huang, H.Ogasawara, S.Kaya, U.Bergmann, L. Å.Näslund, H.Öström, P.Wernet, K. J.Andersson, T.Schiros, and L. G. M.Pettersson, X-ray absorption spectroscopy and Xray Raman scattering of water and ice – An experimental view, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 99(2010)
https://doi.org/10.1016/j.elspec.2010.02.005
|
59 |
M.Leetmaa, M. P.Ljungberg, A.Lyubartsev, A.Nilsson, and L. G. M.Pettersson, Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 135(2010)
https://doi.org/10.1016/j.elspec.2010.02.004
|
60 |
J.Vinson, J. J.Kas, F. D.Vila, J. J.Rehr, and E. L.Shirley, Theoretical optical and X-ray spectra of liquid and solid H2O, Phys. Rev. B85(4), 045101(2012)
https://doi.org/10.1103/PhysRevB.85.045101
|
61 |
O.Fuchs, M.Zharnikov, L.Weinhardt, M.Blum, M.Weigand, Y.Zubavichus, M.Bär, F.Maier, J. D.Denlinger, C.Heske, M.Grunze, and E.Umbach, Isotope and temperature effects in liquid water probed by X-ray absorption and resonant X-ray emission spectroscopy, Phys. Rev. Lett.100(2), 027801(2008)
https://doi.org/10.1103/PhysRevLett.100.027801
|
62 |
D.Nordlund, H.Ogasawara, K. J.Andersson, M.Tatarkhanov, M.Salmerón, L. G. M.Pettersson, and A.Nilsson, Sensitivity of X-ray absorption spectroscopy to hydrogen bond topology, Phys. Rev. B80(23), 233404(2009)
https://doi.org/10.1103/PhysRevB.80.233404
|
63 |
S.Kashtanov, A.Augustsson, Y.Luo, J. H.Guo, C.Sthe, J. E.Rubensson, H.Siegbahn, J.Nordgren, and H.Ågren, Local structures of liquid water studied by Xray emission spectroscopy, Phys. Rev. B69(2), 024201(2004)
https://doi.org/10.1103/PhysRevB.69.024201
|
64 |
J. A.Sellberg, T. A.McQueen, H.Laksmono, S.Schreck, M.Beye, et al., X-ray emission spectroscopy of bulk liquid water in “no-man’s land”, J. Chem. Phys. 142(4), 044505(2015)
https://doi.org/10.1063/1.4905603
|
65 |
M.Odelius, H.Ogasawara, D.Nordlund, O.Fuchs, L.Weinhardt, F.Maier, E.Umbach, C.Heske, Y.Zubavichus, M.Grunze, J. D.Denlinger, L. G. M.Pettersson, and A.Nilsson, Ultrafast core-hole-induced dynamics in water probed by X-ray emission spectroscopy, Phys. Rev. Lett. 94(22), 227401(2005)
https://doi.org/10.1103/PhysRevLett.94.227401
|
66 |
J. H.Guo, Y.Luo, A.Augustsson, J. E.Rubensson, C.Såthe, H.Ågren, H.Siegbahn, and J.Nordgren, Xray emission spectroscopy of hydrogen bonding and electronic structure of liquid water, Phys. Rev. Lett. 89(13), 137402(2002)
https://doi.org/10.1103/PhysRevLett.89.137402
|
67 |
M.Odelius, Molecular dynamics simulations of fine structure in oxygen K-edge X-ray emission spectra of liquid water and ice, Phys. Rev. B79(14), 144204(2009)
https://doi.org/10.1103/PhysRevB.79.144204
|
68 |
L.Weinhardt, O.Fuchs, M.Blum, M.Bär, M.Weigand, J. D.Denlinger, Y.Zubavichus, M.Zharnikov, M.Grunze, C.Heske, and E.Umbach, Resonant X-ray emission spectroscopy of liquid water: Novel instrumentation, high resolution, and the “map” approach, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 206(2010)
https://doi.org/10.1016/j.elspec.2009.02.014
|
69 |
T.Tokushima, Y.Harada, Y.Horikawa, O.Takahashi, Y.Senba, H.Ohashi, L. G. M.Pettersson, A.Nilsson, and S.Shin, High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 192(2010)
https://doi.org/10.1016/j.elspec.2010.02.008
|
70 |
K. M.Lange, M.Soldatov, R.Golnak, M.Gotz, N.Engel, R.Könnecke, J. E.Rubensson, and E. F.Aziz, X-ray emission from pure and dilute H2O and D2O in a liquid microjet: Hydrogen bonds and nuclear dynamics, Phys. Rev. B85(15), 155104(2012)
https://doi.org/10.1103/PhysRevB.85.155104
|
71 |
Z.Sun, M.Chen, J.Wang, S.Biswajit, H.Shen, L.Xu, W.Kang, and X.Wu, X-ray absorption of liquid water studied by advanced ab initio methods, Phys. Rev. B ( Submitted)
|
72 |
B.Brena, D.Nordlund, M.Odelius, H.Ogasawara, A.Nilsson, and L. G. M.Pettersson, Ultrafast molecular dissociation of water in ice, Phys. Rev. Lett. 93(14), 148302(2004)
https://doi.org/10.1103/PhysRevLett.93.148302
|
73 |
M.Neeb, J. E.Rubensson, M.Biermann, and W.Eberhardt, Coherent excitation of vibrational wave functions observed in core hole decay spectra of O2, N2 and CO, J. Electron Spectrosc. Relat. Phenom. 67(2), 261(1994)
https://doi.org/10.1016/0368-2048(93)02050-V
|
74 |
F.Gel’mukhanov, H.Ågren, M.Neeb, J. E.Rubensson, and A.Bringer, Integral properties of channel interference in resonant X-ray scattering, Phys. Lett. A211(2), 101(1996)
https://doi.org/10.1016/0375-9601(95)00919-1
|
75 |
M.Odelius, Information content in O[1s] K-edge X-ray emission spectroscopy of liquid water, J. Phys. Chem. A113(29), 8176(2009)
https://doi.org/10.1021/jp903096k
|
76 |
N. A.Besley, Equation of motion coupled cluster theory calculations of the X-ray emission spectroscopy of water, Chem. Phys. Lett. 542, 42(2012)
https://doi.org/10.1016/j.cplett.2012.05.059
|
77 |
L.Weinhardt, A.Benkert, F.Meyer, M.Blum, R. G.Wilks, W.Yang, M.Bär, F.Reinert, and C.Heske, Nuclear dynamics and spectator effects in resonant inelastic soft X-ray scattering of gas-phase water molecules, J. Chem. Phys. 136(14), 144311(2012)
https://doi.org/10.1063/1.3702644
|
78 |
W.Kohnand L. J.Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133(1965)
https://doi.org/10.1103/PhysRev.140.A1133
|
79 |
J. P.Perdew, K.Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. 77, 3865(1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
80 |
P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21(39), 395502(2009)
https://doi.org/10.1088/0953-8984/21/39/395502
|
81 |
N.Troullierand J. L.Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43(3), 1993(1991)
https://doi.org/10.1103/PhysRevB.43.1993
|
82 |
D. R.Hamann, M.Schlüter, and C.Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494(1979)
https://doi.org/10.1103/PhysRevLett.43.1494
|
83 |
D. R.Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B40(5), 2980(1989)
https://doi.org/10.1103/PhysRevB.40.2980
|
84 |
J. A.Morroneand R.Car, Nuclear quantum effects in water, Phys. Rev. Lett. 101(1), 017801(2008)
https://doi.org/10.1103/PhysRevLett.101.017801
|
85 |
G. J.Martyna, M. L.Klein, and M.Tuckerman, Nose– Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635(1992)
https://doi.org/10.1063/1.463940
|
86 |
W. G.Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A31(3), 1695(1985)
https://doi.org/10.1103/PhysRevA.31.1695
|
87 |
S.Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys.81(1), 511(1984)
https://doi.org/10.1063/1.447334
|
88 |
A.Luzarand D.Chandler, Hydrogen-bond kinetics in liquid water, Nature379(6560), 55(1996)
https://doi.org/10.1038/379055a0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|