Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 63504    https://doi.org/10.1007/s11467-020-0987-z
RESEARCH ARTICLE
Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching
Dimuthu Wijethunge1,2, Lei Zhang1,2, Cheng Tang1,2, Aijun Du1,2()
1. School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
2. Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
 Download: PDF(1450 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.

Keywords photocatalyst      ferroelectric      MoS2      In2Se3      heterostructures      water splitting      2D materials     
Corresponding Author(s): Aijun Du   
Just Accepted Date: 25 August 2020   Issue Date: 14 September 2020
 Cite this article:   
Dimuthu Wijethunge,Lei Zhang,Cheng Tang, et al. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0987-z
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/63504
1 J. M. Coronado, A Historical Introduction to Photocatalysis, in: Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, J. M. Coronado, F. Fresno, M. D. Hernández-Alonso, and R. Portela (Eds.), Springer London: London, 2013, pp 1–4
2 C. F. Goodeve and J. A. Kitchener, The mechanism of photosensitisation by solids, Trans. Faraday Soc. 34(0), 902 (1938)
https://doi.org/10.1039/tf9383400902
3 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
https://doi.org/10.1038/238037a0
4 D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fedoped CeO2 films under visible light irradiation, Sci. Rep. 4(1), 5757 (2014)
https://doi.org/10.1038/srep05757
5 F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. van de Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun. 4(1), 2195 (2013)
https://doi.org/10.1038/ncomms3195
6 P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, WO3-based photocatalysts: Morphology control, activity enhancement and multifunctional applications, Environ. Sci. Nano 4(3), 539 (2017)
https://doi.org/10.1039/C6EN00478D
7 M. Luo, Y. Liu, J. Hu, H. Liu, and J. Li, One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability, ACS Appl. Mater. Interfaces 4(3), 1813 (2012)
https://doi.org/10.1021/am3000903
8 T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation,J. Mater. Sci. 41(11), 3527 (2006)
https://doi.org/10.1007/s10853-005-5655-8
9 A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications, J. Mater. Chem. A 5(35), 18299 (2017)
https://doi.org/10.1039/C7TA04268J
10 P. Varadhan, H. C. Fu, Y. C. Kao, R. H. Horng, and J. H. He, An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction, Nat. Commun. 10(1), 5282 (2019)
https://doi.org/10.1038/s41467-019-12977-x
11 L. Han, F. F. Abdi, R. van de Krol, R. Liu, Z. Huang, H. J. Lewerenz, B. Dam, M. Zeman, and A. H. M. Smets, Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells, Chem- SusChem 7(10), 2832 (2014)
https://doi.org/10.1002/cssc.201402456
12 Y. Li, Y. L. Li, C. M. Araujo, W. Luo, and R. Ahuja, Single-layer MoS2 as an efficient photocatalyst, Catal. Sci. Technol. 3(9), 2214 (2013)
https://doi.org/10.1039/c3cy00207a
13 J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
14 Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV-V compounds for visiblelight photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
https://doi.org/10.1007/s11467-018-0760-8
15 Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)
https://doi.org/10.1063/1.4769731
16 H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)
https://doi.org/10.1021/cm401661x
17 M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018)
https://doi.org/10.1021/jacs.8b07855
18 P. Zhao, Y. Ma, X. Lv, M. Li, B. Huang, and Y. Dai, Twodimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum, Nano Energy 51, 533 (2018)
https://doi.org/10.1016/j.nanoen.2018.07.010
19 R. M. Navarro Yerga, M. C. Álvarez Galván, F. del Valle, J. A. Villoria de la Mano, and J. L. G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem 2(6), 471 (2009)
https://doi.org/10.1002/cssc.200900018
20 A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38(1), 253 (2009)
https://doi.org/10.1039/B800489G
21 M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11(3), 401 (2007)
https://doi.org/10.1016/j.rser.2005.01.009
22 A. Kakekhani and S. Ismail-Beigi, Ferroelectric-based catalysis: Switchable surface chemistry, ACS Catal. 5(8), 4537 (2015)
https://doi.org/10.1021/acscatal.5b00507
23 X. Liu, Y. Wang, J. D. Burton, and E. Y. Tsymbal, Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface, Phys. Rev. B 88(16), 165139 (2013)
https://doi.org/10.1103/PhysRevB.88.165139
24 D. Kim, H. Han, J. H. Lee, J. W. Choi, J. C. Grossman, H. M. Jang, and D. Kim, Electronhole separation in ferroelectric oxides for efficient photovoltaic responses, Proc. Natl. Acad. Sci. USA 115(26), 6566 (2018)
https://doi.org/10.1073/pnas.1721503115
25 D. Wijethunge, C. Tang, C. Zhang, L. Zhang, X. Mao, and A. Du, Bandstructure engineering in 2D materials using ferroelectric materials, Appl. Surf. Sci. 513, 145817 (2020)
https://doi.org/10.1016/j.apsusc.2020.145817
26 F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Roomtemperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016)
https://doi.org/10.1038/ncomms12357
27 S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019)
https://doi.org/10.1038/s41467-019-09669-x
28 A. Chandrasekaran, A. Mishra, and A. K. Singh, Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/ hole gas in multifunctional monolayer MXene, Nano Lett. 17(5), 3290 (2017)
https://doi.org/10.1021/acs.nanolett.7b01035
29 J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction Photocatalysts 29(20), 1601694 (2017)
https://doi.org/10.1002/adma.201601694
30 C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, and L. J. Li, Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano Lett. 18(2), 1253 (2018)
https://doi.org/10.1021/acs.nanolett.7b04852
31 W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Prediction of intrinsic twodimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials, Nat. Commun. 8(1), 14956 (2017)
https://doi.org/10.1038/ncomms14956
32 Y. Jiang, Q. Wang, L. Han, X. Zhang, L. Jiang, Z. Wu, Y. Lai, D. Wang, and F. Liu, Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting, Chem. Eng. J. 358, 752 (2019)
https://doi.org/10.1016/j.cej.2018.10.088
33 J. R. Zhang, X. Z. Deng, B. Gao, L. Chen, C. T. Au, K. Li, S. F. Yin, and M. Q. Cai, Theoretical study on the intrinsic properties of In2Se3/MoS2 as a photocatalyst driven by near-infrared, visible and ultraviolet light, Catal. Sci. Technol. 9(17), 4659 (2019)
https://doi.org/10.1039/C9CY00997C
34 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
35 H. Li, K. Yu, Z. Tang, H. Fu, and Z. Zhu, High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: From theory to experiment, Phys. Chem. Chem. Phys. 18(20), 14074 (2016)
https://doi.org/10.1039/C6CP02027E
36 Q. Li, N. Zhang, Y. Yang, G. Wang, and D. H. L. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures, Langmuir 30(29), 8965 (2014)
https://doi.org/10.1021/la502033t
37 F. Li, C. Shi, D. Wang, G. Cui, P. Zhang, L. Lv, and L. Chen, Improved visible-light absorbance of monolayer MoS2 on AlN substrate and its angle-dependent electronic structures, Phys. Chem. Chem. Phys. 20(46), 29131 (2018)
https://doi.org/10.1039/C8CP03908A
38 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
39 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
40 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
41 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
42 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
43 S. Grimme, J. Antony, S. Ehrlich, and, H. Krieg, A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
https://doi.org/10.1063/1.3382344
44 C. Ataca, M. Topsakal, E. Aktürk, and S. Ciraci, A comparative study of lattice dynamics of three- and twodimensional MoS2, J. Phys. Chem. C 115(33), 16354 (2011)
https://doi.org/10.1021/jp205116x
45 P. Joensen, R. F. Frindt, and S. R. Morrison, Single-layer MoS2, Mater. Res. Bull. 21(4), 457 (1986)
https://doi.org/10.1016/0025-5408(86)90011-5
46 Z. Xie, F. Yang, X. Xu, R. Lin, and L. M. Chen, Functionalization of α-In2Se3 monolayer via adsorption of small molecule for gas sensing, Front. Chem. 6, 430 (2018)
https://doi.org/10.3389/fchem.2018.00430
47 A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83(24), 245213 (2011)
https://doi.org/10.1103/PhysRevB.83.245213
48 S. Lebègue and O. Eriksson, Electronic structure of twodimensional crystals from ab initiotheory, Phys. Rev. B 79(11), 115409 (2009)
https://doi.org/10.1103/PhysRevB.79.115409
49 C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115(27), 13303 (2011)
https://doi.org/10.1021/jp2000442
50 K. Kośmider and J. Fernández-Rossier, Electronic properties of the MoS2–WS2 heterojunction, Phys. Rev. B 87(7), 075451 (2013)
https://doi.org/10.1103/PhysRevB.87.075451
[1] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[2] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[3] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[4] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[5] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[6] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[7] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[8] Xin Li, Peng Wang, Ya-Qiang Wu, Zhen-Hua Liu, Qian-Qian Zhang, Ting-Ting Zhang, Ze-Yan Wang, Yuan-Yuan Liu, Zhao-Ke Zheng, Bai-Biao Huang. ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production[J]. Front. Phys. , 2020, 15(2): 23604-.
[9] Zbigniew Tylczyński. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers[J]. Front. Phys. , 2019, 14(6): 63301-.
[10] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
[11] Yu Hui Lui, Bowei Zhang, Shan Hu. Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction[J]. Front. Phys. , 2019, 14(5): 53402-.
[12] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[13] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[14] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[15] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed