Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (2) : 23201    https://doi.org/10.1007/s11467-020-0992-2
REVIEW ARTICLE
Theory, preparation, properties and catalysis application in 2D graphynes-based materials
Ning Zhang(), Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu
College of Photoelectrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
 Download: PDF(8909 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon has three hybridization forms of sp, sp2− and sp3−, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GDY molecule is a single-layer two-dimensional (2D) planar structure material with highly π-conjugation formed by sp and sp2− hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researchers. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.

Keywords 2D materials      catalysis application      graphyne      property     
Corresponding Author(s): Ning Zhang   
Just Accepted Date: 31 August 2020   Issue Date: 25 November 2020
 Cite this article:   
Ning Zhang,Jiayu Wu,Taoyuan Yu, et al. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0992-2
https://academic.hep.com.cn/fop/EN/Y2021/V16/I2/23201
1 Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, 13(11), 1602896 (2017)
https://doi.org/10.1002/smll.201602896
2 F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)
https://doi.org/10.1039/C7TB01068K
3 M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)
https://doi.org/10.1073/pnas.1714421115
4 Y. L. Ding, B. M. Goh, H. Zhang, K. P. Loh, and L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for highrate lithium ion batteries, J. Power Sources 236, 1 (2013)
https://doi.org/10.1016/j.jpowsour.2013.02.047
5 H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D. L. Carroll, and G. Fang, Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence, Nanotechnology 24(31), 315203 (2013)
https://doi.org/10.1088/0957-4484/24/31/315203
6 J. Lu, K. Zhang, X. Feng Liu, H. Zhang, T. Chien Sum, A. H. Castro Neto, and K. P. Loh, Order–disorder transition in a two-dimensional boron–carbon–nitride alloy, Nat. Commun. 4(1), 2681 (2013)
https://doi.org/10.1038/ncomms3681
7 J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, PLLA nanofibrous paperbased plasmonic substrate with tailored hydrophilicity for focusing SERS detection, ACS Appl. Mater. Interfaces 7(9), 5391 (2015)
https://doi.org/10.1021/am508881k
8 P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, On-nanowire axial heterojunction design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)
https://doi.org/10.1021/acsnano.6b03458
9 Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, and H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes, Nanoscale 8(27), 13273 (2016)
https://doi.org/10.1039/C6NR04020A
10 Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. 128(44), 14053 (2016)
https://doi.org/10.1002/ange.201607393
11 S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, and G. S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas, Sens. Actuators B Chem. 226, 478 (2016)
https://doi.org/10.1016/j.snb.2015.12.005
12 Z. Zhang, Y. Liu, L. Ren, H. Zhang, Z. Huang, X. Qi, X. Wei, and J. Zhong, Three-dimensional-networked Ni-Co- Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution, Electrochim. Acta 200, 142 (2016)
https://doi.org/10.1016/j.electacta.2016.03.186
13 P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
https://doi.org/10.1021/acsami.7b01709
14 X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, and H. Zhang, Few‐layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater. 7(19), 1700396 (2017)
https://doi.org/10.1002/aenm.201700396
15 Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)
https://doi.org/10.1039/C7MH00543A
16 S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)
https://doi.org/10.1002/adom.201500347
17 K. Wang, R. Liang, and P. Qiu, Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy, IEEE Photonics J. 7(6), 1 (2015)
https://doi.org/10.1109/JPHOT.2015.2505145
18 M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)
https://doi.org/10.1364/OL.40.004767
19 Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbiumdoped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)
https://doi.org/10.1109/JSTQE.2013.2295196
20 P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27(3), 264 (2015)
https://doi.org/10.1109/LPT.2014.2361915
21 X. Jiang, S, Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in fewlayer MXene Ti3C2Tx (T= F, O, or OH), Laser Photonics Rev. 12 (2018)
https://doi.org/10.1002/lpor.201700229
22 D. Wang, M. Zhang, Z. Li, and Y. Cui, Flexible optical cross-connect structures supporting WDM multicast with multiple pumps for multiple channels, IEEE Photonics J. 6(6), 1 (2014)
https://doi.org/10.1109/JPHOT.2014.2374614
23 P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber, IEEE Photonics Technol. Lett. 26(19), 1912 (2014)
https://doi.org/10.1109/LPT.2014.2341832
24 H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers, Opt. Commun. 283(17), 3334 (2010)
https://doi.org/10.1016/j.optcom.2010.04.064
25 Y. Song, H. Zhang, D. Tang, and D. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)
https://doi.org/10.1364/OE.20.027283
26 Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
https://doi.org/10.1109/JPHOT.2012.2199102
27 G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVDgrown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)
https://doi.org/10.1021/am403205v
28 R. Zhou, P. Tang, Y. Chen, S. Chen, C. Zhao, H. Zhang, and S. Wen, Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber, Appl. Opt. 53(2), 254 (2014)
https://doi.org/10.1364/AO.53.000254
29 Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
https://doi.org/10.1038/srep16372
30 L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)
https://doi.org/10.1364/PRJ.3.000214
31 H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation, ACS Photonics 2(7), 832 (2015)
https://doi.org/10.1021/acsphotonics.5b00193
32 Y. F. Song, H. Zhang, L. M. Zhao, D. Y. Shen, and D. Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene, Opt. Express 24(2), 1814 (2016)
https://doi.org/10.1364/OE.24.001814
33 M. Liu, A. Luo, X. Zheng, N. Zhao, H. Liu, Z. Luo, W. Xu, Y. Chen, C. Zhao, and H. Zhang, Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser, J. Lightwave Technol. 33(10), 2056 (2015)
https://doi.org/10.1109/JLT.2015.2396939
34 R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐ property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
https://doi.org/10.1063/1.453405
35 Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
https://doi.org/10.1039/c3cs60388a
36 J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology 27(46), 462001 (2016)
https://doi.org/10.1088/0957-4484/27/46/462001
37 H. Bao, L. Wang, C. Li, and J. Luo, Structural characterization and identification of graphdiyne and graphdiynebased materials, ACS Appl. Mater. Interfaces 11(3), 2717 (2019)
https://doi.org/10.1021/acsami.8b05051
38 Q. Bao, H. Zhang, and C. Pan, Electric-field-induced microstructural transformation of carbon nanotubes, Appl. Phys. Lett. 89(6), 063124 (2006)
https://doi.org/10.1063/1.2227620
39 Q. Bao, H. Zhang, and C. Pan, Simulation for growth of multi-walled carbon nanotubes in electric field, Comput. Mater. Sci. 39(3), 616 (2007)
https://doi.org/10.1016/j.commatsci.2006.08.020
40 S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, Healable, transparent, room‐temperature electronic sensors based on carbon nanotube network‐coated polyelectrolyte multilayers, Small 11(43), 5807 (2015)
https://doi.org/10.1002/smll.201502169
41 P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing, Small 11(40), 5409 (2015)
https://doi.org/10.1002/smll.201501772
42 H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter, Appl. Phys. Express 7(2), 024301 (2014)
https://doi.org/10.7567/APEX.7.024301
43 Z. Huang, W. Han, H, Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)
https://doi.org/10.1088/2053-1583/2/3/035011
44 R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)
https://doi.org/10.1016/j.nanoen.2017.02.037
45 Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
https://doi.org/10.1039/c1cc15129k
46 S. W. Cranford, and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
https://doi.org/10.1039/c2nr30921a
47 H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, and D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(13), 4281 (2014)
https://doi.org/10.1039/C3CS60437C
48 P. Wu, P. Du, H. Zhang, and C. Cai, Graphdiyne as a metal-free catalyst for low-temperature CO oxidation, Phys. Chem. Chem. Phys. 16(12), 5640 (2014)
https://doi.org/10.1039/C3CP55121K
49 H. Ren, H. Shao, L. Zhang, D. Guo, Q. Jin, R. Yu, L. Wang, Y. Li, Y. Wang, H. Zhao, and D. Wang, A new graphdiyne nanosheet/Pt nanoparticle‐based counter electrode material with enhanced catalytic activity for dye‐sensitized solar cells, Adv. Energy Mater. 5(12), 1500296 (2015)
https://doi.org/10.1002/aenm.201500296
50 K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
https://doi.org/10.1021/jp212181h
51 H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
https://doi.org/10.1063/1.4789635
52 Z. Chen, C. Molina‐Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
https://doi.org/10.1002/andp.201700056
53 Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, and Y. Li, Synthesis and properties of 2D carbon graphdiyne, Acc. Chem. Res. 50(10), 2470 (2017)
https://doi.org/10.1021/acs.accounts.7b00205
54 Z. Jia, Z. Zuo, Y. Yi, H. Liu, D. Li, Y. Li, and Y. Li, Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage, Nano Energy 33, 343 (2017)
https://doi.org/10.1016/j.nanoen.2017.01.049
55 J. He, N. Wang, Z. Yang, X. Shen, K. Wang, C. Huang, Y. Yi, Z. Tu, and Y. Li, Fluoride graphdiyne as a freestanding electrode displaying ultra-stable and extraordinary high Li storage performance, Energy Environ. Sci. 11(10), 2893 (2018)
https://doi.org/10.1039/C8EE01642A
56 C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev. 118(16), 7744 (2018)
https://doi.org/10.1021/acs.chemrev.8b00288
57 M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
https://doi.org/10.1002/anie.199708361
58 N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
https://doi.org/10.1103/PhysRevB.58.11009
59 M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
https://doi.org/10.1351/pac200880030519
60 G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19), 3256 (2010)
https://doi.org/10.1039/b922733d
61 M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
https://doi.org/10.1021/nn102472s
62 K. Wang, N. Wang, J. He, Z. Yang, X. Shen, and C. Huang, Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors, ACS Appl. Mater. Interfaces 9(46), 40604 (2017)
https://doi.org/10.1021/acsami.7b11420
63 C. Xie, N. Wang, X. Li, G. Xu, and C. Huang, Research on the preparation of graphdiyne and its derivatives, Chemistry 26(3), 569 (2020)
https://doi.org/10.1002/chem.202080361
64 N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, and D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano 7(2), 1504 (2013)
https://doi.org/10.1021/nn305288z
65 R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
https://doi.org/10.1039/C4NR03185G
66 S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
https://doi.org/10.1039/C4CC08706B
67 X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Robust superhydrophobic foam: A graphdiyne‐based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
https://doi.org/10.1002/adma.201504407
68 N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, and D. Wang, Few‐layer graphdiyne nanosheets applied for multiplexed real‐time DNA detection, Adv. Mater. 29(18), 1606755 (2017)
https://doi.org/10.1002/adma.201606755
69 N. Yang, in: The Preparation of Nano Composites and Their Applications in Solar Energy Conversion93–110, Springer, 2017
https://doi.org/10.1007/978-3-662-53485-4_5
70 C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, and W. Chen, Highperformance graphdiyne-based electrochemical actuators, Nat. Commun. 9(1), 752 (2018)
https://doi.org/10.1038/s41467-018-03095-1
71 Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
https://doi.org/10.1038/s41467-018-03896-4
72 Z. Shi, X. Li, Y. Zhang, H. Li, Y. Zhao, P. Guo, and Y. Guo, Graphdiyne for ultrashort pulse generation in an erbium-doped hybrid mode-locked fiber laser, Front. Phys. 7, 150 (2019)
https://doi.org/10.3389/fphy.2019.00150
73 W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, and L. Mao, Graphdiyne oxide: A new carbon nanozyme, Chem. Commun. 56(38), 5115 (2020)
https://doi.org/10.1039/D0CC01840F
74 T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)
https://doi.org/10.1039/C6NR08265C
75 Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2, 035011 (2015)
https://doi.org/10.1088/2053-1583/2/3/035011
76 J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)
https://doi.org/10.1364/OE.23.022643
77 Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
https://doi.org/10.1364/OE.24.025933
78 B. X. Wang and G. Z. Wang, Quad-band terahertz absorber based on a simple design of metamaterial resonator, IEEE Photonics J. 8(6), 1 (2016)
https://doi.org/10.1109/JPHOT.2016.2633560
79 J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signalprocessing toward high performances and enhanced stability, ACS Photonics 4(6), 1466 (2017)
https://doi.org/10.1021/acsphotonics.7b00231
80 J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
https://doi.org/10.1038/srep42357
81 Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
https://doi.org/10.1039/C7TC00071E
82 Z. Chu, J. Liu, Z. Guo, and H. Zhang, 2 m passively Q-switched laser based on black phosphorus, Opt. Mater. Express 6(7), 2374 (2016)
https://doi.org/10.1364/OME.6.002374
83 J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
https://doi.org/10.1364/OE.24.030289
84 X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)
https://doi.org/10.1002/adfm.201606834
85 J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
https://doi.org/10.1038/srep30361
86 C. Ge, J. Chen, S. Tang, Y. Du, and N. Tang, Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments, ACS Appl. Mater. Interfaces 11(3), 2707 (2019)
https://doi.org/10.1021/acsami.8b03413
87 R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Carbon nanotubes – the route toward applications, Science 297(5582), 787 (2002)
https://doi.org/10.1126/science.1060928
88 Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, and X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure, Carbon 136, 248 (2018)
https://doi.org/10.1016/j.carbon.2018.04.081
89 C. Yang, Y. Li, Y. Chen, Q. Li, L. Wu, and X. Cui, Mechanochemical synthesis of ‐graphyne with enhanced lithium storage performance, Small 15(8), 1804710 (2019)
https://doi.org/10.1002/smll.201804710
90 S. W. Cranford, D. B. Brommer, and M. Buehler, Extended graphynes: Simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
https://doi.org/10.1039/c2nr31644g
91 J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, J. Phys. Chem. C 115(42), 20466 (2011)
https://doi.org/10.1021/jp206751m
92 J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
https://doi.org/10.1063/1.3583476
93 Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
https://doi.org/10.1021/jp4021189
94 T. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon–carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene, Struct. Chem. 21(6), 1155 (2010)
https://doi.org/10.1007/s11224-010-9670-2
95 A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
https://doi.org/10.1016/j.progsolidstchem.2012.12.001
96 J. Carper, Vol. 124192-+ (Bowker magazine group cahners magazine division 249 W 17TH ST, New York, 1999
97 Y. Yang and X. Xu, Mechanical properties of graphyne and its family–A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
https://doi.org/10.1016/j.commatsci.2012.03.052
98 S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
99 H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5), 768 (2011)
https://doi.org/10.1039/c1ra00481f
100 M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, and M. Faghihnasiri, Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption, Solid State Commun. 152(20), 1885 (2012)
https://doi.org/10.1016/j.ssc.2012.07.024
101 Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: A first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
https://doi.org/10.1039/c2cp42387a
102 Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
https://doi.org/10.1016/j.physb.2012.07.026
103 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature 438, 197 (2005)
https://doi.org/10.1038/nature04233
104 D. Malko, C. Neiss, F. Viñes, and A. Görling, Competition for graphene: Graphynes with direction-dependent Dirac cones, Phys. Rev. Lett. 108(8), 086804 (2012)
https://doi.org/10.1103/PhysRevLett.108.086804
105 P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
106 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
107 D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
108 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
109 J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A. Görling, Understanding band gaps of solids in generalized Kohn–Sham theory, Proc. Natl. Acad. Sci. USA 114(11), 2801 (2017)
https://doi.org/10.1073/pnas.1621352114
110 E. N. Economou, Green’s Functions in Quantum Physics, Vol. 7, Springer Science & Business Media, 2006
https://doi.org/10.1007/3-540-28841-4
111 L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. 139(3A), A796 (1965)
https://doi.org/10.1103/PhysRev.139.A796
112 M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
https://doi.org/10.1103/PhysRevB.34.5390
113 F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52(7–8), 555 (1929)
https://doi.org/10.1007/BF01339455
114 J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
https://doi.org/10.1103/PhysRev.94.1498
115 M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65(16), 165401 (2002)
https://doi.org/10.1103/PhysRevB.65.165401
116 J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
117 Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phononphonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B 78(22), 224303 (2008)
https://doi.org/10.1103/PhysRevB.78.224303
118 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
119 X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, and Y. Li, Self-catalyzed growth of large-area nanofilms of two-dimensional carbon, Sci. Rep. 5(1), 7756 (2015)
https://doi.org/10.1038/srep07756
120 R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, and S. Zhang, Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil, Adv. Mater. 29(18), 1604665 (2017)
https://doi.org/10.1002/adma.201604665
121 J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang, and Z. Liu, Synthesis of ultrathin graphdiyne film using a surface template, ACS Appl. Mater. Interfaces 11(3), 2632 (2019)
https://doi.org/10.1021/acsami.8b02612
122 F. Zhao, In situ growth of graphdiyne on arbitrary substrates with a controlled-release method, Chem. Commun. 54, 6004 (2018)
https://doi.org/10.1039/C8CC03006E
123 Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, J. Gao, T. Jiu, and C. Huang, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces 11(3), 2608 (2019)
https://doi.org/10.1021/acsami.8b01823
124 G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, and Y. Li, Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission, J. Phys. Chem. C 115(6), 2611 (2011)
https://doi.org/10.1021/jp107996f
125 X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Construction of graphdiyne nanowires with highconductivity and mobility, Dalton Transactions 41, 730 (2012)
https://doi.org/10.1039/C1DT11641J
126 B. G. Shohany, M. R. Roknabadi, and A. Kompany, Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes, Physica E 84, 146 (2016)
https://doi.org/10.1016/j.physe.2016.05.040
127 L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H. J. Gao, Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures, Appl. Phys. Lett. 98(17), 173102 (2011)
https://doi.org/10.1063/1.3583507
128 X. Gao, H. Ren, J. Zhou, R. Du, C. Yin, R. Liu, H. Peng, L. Tong, Z. Liu, and J. Zhang, Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation, Chem. Mater. 29(14), 5777 (2017)
https://doi.org/10.1021/acs.chemmater.7b01838
129 J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
https://doi.org/10.1021/jacs.5b04057
130 X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, A graphdiyne-based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
https://doi.org/10.1002/adma.201504407
131 P. Prabakaran, S. Satapathy, E. Prasad, and S. Sankararaman, Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics, J. Mater. Chem. C 6, 380, (2018)
https://doi.org/10.1039/C7TC04655C
132 X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29, 1605308 (2017)
https://doi.org/10.1002/adma.201605308
133 R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/ liquid interface, J. Am. Chem. Soc. 139(8), 3145 (2017)
https://doi.org/10.1021/jacs.6b12776
134 R. Toyoda, R. Shiotsuki, N. Fukui, K. Wada, H. Maeda, R. Sakamoto, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Expansion of the graphdiyne family: A triphenylene-cored analogue, ACS Appl. Mater. Interfaces 11(3), 2730 (2018)
https://doi.org/10.1021/acsami.8b00743
135 X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li, and Y. Zhao, Interfacial synthesis of conjugated two-dimensional N-graphdiyne, ACS Appl. Mater. Interfaces 10(1), 53 (2018)
https://doi.org/10.1021/acsami.7b17326
136 H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, and Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes, Angewandte Chemie International Edition 57(3), 774 (2018)
https://doi.org/10.1002/anie.201711366
137 S. S. Wang, H. B. Liu, X. N. Kan, L. Wang, Y. H. Chen, B. Su, Y. L. Li, and L. Jiang, Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays, Small 13(4), 1602265 (2017)
https://doi.org/10.1002/smll.201602265
138 Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li, and Y. Li, A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode, Chem. Commun. 53(57), 8074 (2017)
https://doi.org/10.1039/C7CC03200E
139 H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, and Y. Li, N-doped graphdiyne for highperformance electrochemical electrodes, Nano Energy 44, 144 (2018)
https://doi.org/10.1016/j.nanoen.2017.11.072
140 J. Li, J. Xu, Z. Xie, X. Gao, J. Zhou, Y. Xiong, C. Chen, J. Zhang, and Z. Liu, Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application, Adv. Mater. 30(20), 1800548 (2018)
https://doi.org/10.1002/adma.201800548
141 Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101(8), 081909 (2012)
https://doi.org/10.1063/1.4747719
142 A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes, physica status solidi (b) 248, 1879 (2011)
https://doi.org/10.1002/pssb.201046583
143 J. Chen, J. Xi, D. Wang, and Z. Shuai, Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction, J. Phys. Chem. Lett. 4(9), 1443 (2013)
https://doi.org/10.1021/jz4005587
144 J. Xi, D. Wang, Y. Yi, and Z. Shuai, Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach, J. Chem. Phys. 141(3), 034704 (2014)
https://doi.org/10.1063/1.4887538
145 B. G. Kim and H. J. Choi, Graphyne: Hexagonal network of carbon with versatile Dirac cones, Phys. Rev. B 86(11), 115435 (2012)
https://doi.org/10.1103/PhysRevB.86.115435
146 J. He, S. Y. Ma, P. Zhou, C. X. Zhang, C. He, and L. Z. Sun, Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+Ucalculations, J. Phys. Chem. C 116(50), 26313 (2012)
https://doi.org/10.1021/jp307408u
147 H. Bu, M. Zhao, A. Wang, and X. Wang, First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons, Carbon 65, 341 (2013)
https://doi.org/10.1016/j.carbon.2013.08.035
148 G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
https://doi.org/10.1103/PhysRevB.84.075439
149 Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, and J. Lu, Structural and electronic properties of bilayer and trilayer graphdiyne, Nanoscale 4(13), 3990 (2012)
https://doi.org/10.1039/c2nr12026g
150 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
151 X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, and J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv. 4(7), eaat6378 (2018)
https://doi.org/10.1126/sciadv.aat6378
152 C. Li, X. Lu, Y. Han, S. Tang, Y. Ding, R. Liu, H. Bao, Y. Li, J. Luo, and T. Lu, Direct imaging and determination of the crystal structure of six-layered graphdiyne, Nano Res. 11(3), 1714 (2018)
https://doi.org/10.1007/s12274-017-1789-7
153 J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
https://doi.org/10.1021/jacs.5b04057
154 S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong, Z. Liu, J. Zhang, and Z. Liu, Raman spectra and corresponding strain effects in graphyne and graphdiyne, J. Phys. Chem. C 120(19), 10605 (2016)
https://doi.org/10.1021/acs.jpcc.5b12388
155 J. Zhong, J. Wang, J. G. Zhou, B. H. Mao, C. H. Liu, H. B. Liu, Y. L. Li, T. K. Sham, X. H. Sun, and S. D. Wang, Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy, J. Phys. Chem. C 117(11), 5931 (2013)
https://doi.org/10.1021/jp310013z
156 Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du, and N. Tang, Intrinsic magnetism of graphdiyne, Appl. Phys. Lett. 111(3), 033101 (2017)
https://doi.org/10.1063/1.4993916
157 X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)
https://doi.org/10.1039/C1CS15078B
158 J. Zhou, J. Zhang, and Z. Liu, Advanced progress in the synthesis of graphdiyne, Acta Physico-Chimica Sinica 34(9), 977 (2018)
159 J. Xi, Y. Nakamura, T. Zhao, D. Wang, and Z. Shuai, Theoretical studies on the deformation potential, electron-phonon coupling, and carrier transports of layered systems, Acta Physico-Chimica Sinica 34(9), 961 (2018)
https://doi.org/10.3866/PKU.WHXB201802051
160 J. Lee, Y. Li, J. Tang, and X. Cui, Synthesis of hydrogen substituted graphyne through mechanochemistry and its electrocatalytic properties, Acta Physico-Chimica Sinica 34(9), 1080 (2018)
https://doi.org/10.3866/PKU.WHXB201802262
161 M. Liu and Y. Li, Graphdiyne: From synthesis to application, Acta Physico-Chimica Sinica 34(9), 959 (2018)
https://doi.org/10.3866/PKU.WHXB201803232
162 X. Chen and S. Zhang, Modulation of molecular sensing properties of graphdiyne based on 3d impurities, Acta Physico-Chimica Sinica 34(9), 1061 (2018)
163 X. Shen, J. He, N. Wang, and C. Huang, Graphdiyne for electrochemical energy storage devices, Acta Physico-Chimica Sinica 34(9), 1029 (2018)
https://doi.org/10.3866/PKU.WHXB201801122
164 X. Lu, Y. Han, and T. Lu, Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions, Acta Physico-Chimica Sinica 34(9), 1014 (2018)
https://doi.org/10.3866/PKU.WHXB201801171
165 Y. Chen, J. Li, and H. Liu, Preparation of graphdiyneorganic conjugated molecular composite materials for lithium ion batteries, Acta Physico-Chimica Sinica 34(9), 1074 (2018)
166 Y. Zhao, L. Zhang, J. Qi, Q. Jin, K. Lin, and D. Wang, Graphdiyne with enhanced ability for electron transfer, Wuli Huaxue Xuebao 34(9), 1048 (2018)
167 Y. Li and Y. Li, Chemical modification and functionalization of graphdiyne, Acta Physico-Chimica Sinica 34(9), 992 (2018)
168 Z. Huang, Z. Yu, Y. Li, and J. Wang, ZnO ultraviolet photodetector modified with graphdiyne, Acta Physico-Chimica Sinica 34(9), 1088 (2018)
169 S. Wang, L. Yi, J. E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, and Y. Li, A novel and highly efficient photocatalyst based on P25–Graphdiyne nanocomposite, Small 8(2), 265 (2012)
https://doi.org/10.1002/smll.201101686
170 Y. Y. Liu, First-principles study on new photocatalytic materials graphdiyne-TiO2, Acta Chimica Sinica 71(2), 260 (2013)
https://doi.org/10.6023/A12090705
171 S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. J. Kim, and G. Venugopal, Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C 119(38), 22057 (2015)
https://doi.org/10.1021/acs.jpcc.5b06138
172 X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
https://doi.org/10.1039/C4CP04683H
173 H. Y. Si, C. J. Mao, J. Y. Zhou, X. F. Rong, Q. X. Deng, S. L. Chen, J. J. Zhao, X. G. Sun, Y. M. Shen, W. J. Feng, P. Gao, and J. Zhang, Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne, Carbon 132, 598 (2018)
https://doi.org/10.1016/j.carbon.2018.02.107
174 S. Guo, Y. Jiang, F. Wu, P. Yu, H. Liu, Y. Li, and L. Mao, Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation, ACS Appl. Mater. Interfaces 11(3), 2684 (2019)
https://doi.org/10.1021/acsami.8b04463
175 J. X. Lv, Z. M. Zhang, J. Wang, X. L. Lu, W. Zhang, and T. B. Lu, In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production, ACS Appl. Mater. Interfaces 11(3), 2655 (2019)
https://doi.org/10.1021/acsami.8b03326
176 B. K. Das, D. Sen, and K. K. Chattopadhyay, Nitrogen doping in acetylene bonded two dimensional carbon crystals: Ab-initioforecast of electrocatalytic activities vis-à-vis boron doping, Carbon 105, 330 (2016)
https://doi.org/10.1016/j.carbon.2016.04.055
177 B. K. Das, D. Sen, and K. K. Chattopadhyay, Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study, Phys. Chem. Chem. Phys. 18(4), 2949 (2016)
https://doi.org/10.1039/C5CP05768J
178 B. Kang and J. Y. Lee, Graphynes as promising cathode material of fuel cell: Improvement of oxygen reduction efficiency, J. Phys. Chem. C 118(22), 12035 (2014)
https://doi.org/10.1021/jp502780y
179 X. Chen, Q. Qiao, L. An, and D. Xia, Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study, J. Phys. Chem. C 119(21), 11493 (2015)
https://doi.org/10.1021/acs.jpcc.5b02505
180 S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu, and B. Li, Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium, J. Mater. Chem. A Mater. Energy Sustain. 4(13), 4738 (2016)
https://doi.org/10.1039/C5TA10579J
181 A. Mohajeri and A. Shahsavar, Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/ sulfur dual doping versus oxygen containing functional groups, J. Mater. Sci. 52(9), 5366 (2017)
https://doi.org/10.1007/s10853-017-0779-1
182 Q. Lv, W. Si, Z. Yang, N. Wang, Z. Tu, Y. Yi, C. Huang, L. Jiang, M. Zhang, J. He, and Y. Long, Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces 9(35), 29744 (2017)
https://doi.org/10.1021/acsami.7b08115
183 D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271), 361 (2016)
https://doi.org/10.1126/science.aad0832
184 Y. Xue, Y. Guo, Y. Yi, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Self-catalyzed growth of Cu@graphdiyne core– shell nanowires array for high efficient hydrogen evolution cathode, Nano Energy 30, 858 (2016)
https://doi.org/10.1016/j.nanoen.2016.09.005
185 Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH, ACS Appl. Mater. Interfaces 8(45), 31083 (2016)
https://doi.org/10.1021/acsami.6b12655
186 X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, and T. B. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution, Angewandte Chemie International Edition 57(30), 9382 (2018)
https://doi.org/10.1002/anie.201804817
187 Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
https://doi.org/10.1038/s41467-018-03896-4
188 Y. Xue, Z. Zuo, Y. Li, H. Liu, and Y. Li, Graphdiyne‐supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material, Small 13(31), 1700936 (2017)
https://doi.org/10.1002/smll.201700936
189 H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Li, Z. Zuo, Y. Zhao, Z. Li, and Y. Li, Efficient hydrogen production on a 3D flexible heterojunction material, Adv. Mater. 30(21), 1707082 (2018)
https://doi.org/10.1002/adma.201707082
190 G. Shi, C. Yu, Z. Fan, J. Li, and M. Yuan, Graphdiynesupported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution, ACS Appl. Mater. Interfaces 11(3), 2662 (2019)
https://doi.org/10.1021/acsami.8b03345
191 P. Kuang, B. Zhu, Y. Li, H. Liu, J. Yu, and K. Fan, Graphdiyne: A superior carbon additive to boost the activity of water oxidation catalysts, Nanoscale Horizons 3(3), 317 (2018).
https://doi.org/10.1039/C8NH00027A
192 Y. Yao, Z. Jin, Y. Chen, Z. Gao, and S. Liu, Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon 129, 228 (2018)
https://doi.org/10.1016/j.carbon.2017.12.024
193 J. Li, X. Gao, X. Jiang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A promising catalystsupport to stabilize cobalt nanoparticles for oxygen evolution, ACS Catal. 7(8), 5209 (2017)
https://doi.org/10.1021/acscatal.7b01781
194 H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Zhao, Z. Li, and Y. Li, Controlled growth of MoS2 nanosheets on 2D Ndoped graphdiyne nanolayers for highly associated effects on water reduction, Adv. Funct. Mater. 28(19), 1707564 (2018)
https://doi.org/10.1002/adfm.201707564
195 L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, and Y. Li, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, J. Am. Chem. Soc. 141(27), 10677 (2019)
https://doi.org/10.1021/jacs.9b03004
196 Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, X. Chen, Y. Gao, B. Huang, and Y. Li, Graphdiyne interface engineering: Highly active and selective ammonia synthesis, Angew. Chem. Int. Ed. 59(31), 13021 (2020)
https://doi.org/10.1002/anie.202004213
197 C. Xing, C. Wu, Y. Xue, Y. Zhao, L. Hui, H. Yu, Y. Liu, Q. Pan, Y. Fang, C. Zhang, D. Zhang, X. Chen, and Y. Li, A highly selective and active metal-free catalyst for ammonia production, Nanoscale Horizons 5(8), 1274 (2020)
https://doi.org/10.1039/D0NH00287A
198 X. Gao, J. Li, R. Du, J. Zhou, M. Y. Huang, R. Liu, J. Li, Z. Xie, L. Z. Wu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29(9), 1605308 (2017)
https://doi.org/10.1002/adma.201605308
199 Y. Y. Han, X. L. Lu, S. F. Tang, X. P. Yin, Z. W. Wei, and T. B. Lu, Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride, Adv. Energy Mater. 8(16), 1702992 (2018)
https://doi.org/10.1002/aenm.201702992
200 L. Hui, D. Jia, H. Yu, Y. Xue, and Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting, ACS Appl. Mater. Interfaces 11(3), 2618 (2019)
https://doi.org/10.1021/acsami.8b01887
201 L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang, and Y. Li, Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting, Adv. Energy Mater. 8(20), 1800175 (2018)
https://doi.org/10.1002/aenm.201800175
202 L. Hui, Y. Xue, B. Huang, H. Yu, C. Zhang, D. Zhang, D. Jia, Y. Zhao, Y. Li, H. Liu, and Y. Li, Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun. 9(1), 5309 (2018)
https://doi.org/10.1038/s41467-018-07790-x
203 Y. Xue, Y. Li, J. Zhang, Z. Liu, and Y. Zhao, 2D graphdiyne materials: Challenges and opportunities in energy field, Sci. China Chem. 61(7), 765 (2018)
https://doi.org/10.1007/s11426-018-9270-y
204 H. Yu, Y. Xue, and Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater. 31(42), 1803101 (2019)
https://doi.org/10.1002/adma.201803101
205 A. Seif, M. J. López, A. Granja-DelRío, K. Azizi, and J. A. Alonso, Adsorption and growth of palladium clusters on graphdiyne, Phys. Chem. Chem. Phys. 19(29), 19094 (2017)
https://doi.org/10.1039/C7CP03263C
206 H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
https://doi.org/10.1021/ja5131337
207 Z. Lu, S. Li, P. Lv, C. He, D. Ma, and Z. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM= Pd, Pt, Rh and Ir): The implications for NM growing, Appl. Surf. Sci. 360, 1 (2016)
https://doi.org/10.1016/j.apsusc.2015.10.219
208 A. H. Mashhadzadeh, A. M. Vahedi, M. Ardjmand, and M. G. Ahangari, Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study, Superlattices Microstruct. 100, 1094 (2016)
https://doi.org/10.1016/j.spmi.2016.10.079
209 Z. W. Chen, Z. Wen, and Q. Jiang, Rational design of Ag38 cluster supported by graphdiyne for catalytic CO oxidation, J. Phys. Chem. C 121(6), 3463 (2017)
https://doi.org/10.1021/acs.jpcc.6b12434
210 Z. Z. Lin, Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108, 343 (2016)
https://doi.org/10.1016/j.carbon.2016.07.040
211 Z. Z. Lin, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst, Carbon 86, 301 (2015)
https://doi.org/10.1016/j.carbon.2015.02.014
212 H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
https://doi.org/10.1021/jp406081v
213 H. Shen, Y. Li, and Z. Shi, A novel graphdiyne-based catalyst for effective hydrogenation reaction, ACS Appl. Mater. Interfaces 11(3), 2563 (2019)
https://doi.org/10.1021/acsami.8b00566
[1] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[2] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[3] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[4] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[5] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[6] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[7] Mosayeb Naseri, Shiru Lin, Jaafar Jalilian, Jinxing Gu, Zhongfang Chen. Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction[J]. Front. Phys. , 2018, 13(3): 138102-.
[8] Shiru Lin, Yanchao Wang, Zhongfang Chen. Two-dimensional aluminum monoxide nanosheets: A computational study[J]. Front. Phys. , 2018, 13(3): 138109-.
[9] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[10] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[11] Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications[J]. Front. Phys. , 2015, 10(3): 107303-.
[12] Qiang Liu, Jin-Qing Fang, Yong Li. A unified dynamic scaling property for the unified hybrid network theory framework[J]. Front. Phys. , 2014, 9(2): 240-245.
[13] PANG Xiao-feng. Features and states of microscopic particles in nonlinear quantum-mechanics systems[J]. Front. Phys. , 2008, 3(2): 205-237.
[14] HE Ju-long, LIU Zhong-yuan, YU Dong-li, XU Bo, TIAN Yong-jun. Investigations on ternary B-C-N materials[J]. Front. Phys. , 2007, 2(2): 186-190.
[15] DING Yi, YANG Xiao-bao, NI Jun. Adsorption on the carbon nanotubes[J]. Front. Phys. , 2006, 1(3): 317-322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed