|
|
Theory, preparation, properties and catalysis application in 2D graphynes-based materials |
Ning Zhang( ), Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu |
College of Photoelectrical Engineering, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract Carbon has three hybridization forms of sp−, sp2− and sp3−, and the combination of different forms can obtain different kinds of carbon allotropes, such as diamond, carbon nanotubes, fullerene, graphynes (GYs) and graphdiyne (GDY). Among them, the GDY molecule is a single-layer two-dimensional (2D) planar structure material with highly π-conjugation formed by sp− and sp2− hybridization. GDY has a carbon atom ring composed of benzene ring and acetylene, which makes GDY have a uniformly distributed pore structure. In addition, GDY planar material have some slight wrinkles, which makes GDY have better self-stability than other 2D planar materials. The excellent properties of GDY make it attract the attention of researchers. Therefore, GDY is widely used in chemical catalysis, electronics, communications, clean energy and composite materials. This paper summarizes the recent progress of GDY research, including structure, preparation, properties and application of GDY in the field of catalysts.
|
Keywords
2D materials
catalysis application
graphyne
property
|
Corresponding Author(s):
Ning Zhang
|
Just Accepted Date: 31 August 2020
Issue Date: 25 November 2020
|
|
1 |
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, and X. F. Yu, TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer, 13(11), 1602896 (2017)
https://doi.org/10.1002/smll.201602896
|
2 |
F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, and Z. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)
https://doi.org/10.1039/C7TB01068K
|
3 |
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, and Y. Cao, Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. USA 115(3), 501 (2018)
https://doi.org/10.1073/pnas.1714421115
|
4 |
Y. L. Ding, B. M. Goh, H. Zhang, K. P. Loh, and L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for highrate lithium ion batteries, J. Power Sources 236, 1 (2013)
https://doi.org/10.1016/j.jpowsour.2013.02.047
|
5 |
H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D. L. Carroll, and G. Fang, Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence, Nanotechnology 24(31), 315203 (2013)
https://doi.org/10.1088/0957-4484/24/31/315203
|
6 |
J. Lu, K. Zhang, X. Feng Liu, H. Zhang, T. Chien Sum, A. H. Castro Neto, and K. P. Loh, Order–disorder transition in a two-dimensional boron–carbon–nitride alloy, Nat. Commun. 4(1), 2681 (2013)
https://doi.org/10.1038/ncomms3681
|
7 |
J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, PLLA nanofibrous paperbased plasmonic substrate with tailored hydrophilicity for focusing SERS detection, ACS Appl. Mater. Interfaces 7(9), 5391 (2015)
https://doi.org/10.1021/am508881k
|
8 |
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, and K. M. Yu, On-nanowire axial heterojunction design for high-performance photodetectors, ACS Nano 10(9), 8474 (2016)
https://doi.org/10.1021/acsnano.6b03458
|
9 |
Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, and H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes, Nanoscale 8(27), 13273 (2016)
https://doi.org/10.1039/C6NR04020A
|
10 |
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, and S. Wang, Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. 128(44), 14053 (2016)
https://doi.org/10.1002/ange.201607393
|
11 |
S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, and G. S. Zakharova, High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas, Sens. Actuators B Chem. 226, 478 (2016)
https://doi.org/10.1016/j.snb.2015.12.005
|
12 |
Z. Zhang, Y. Liu, L. Ren, H. Zhang, Z. Huang, X. Qi, X. Wei, and J. Zhong, Three-dimensional-networked Ni-Co- Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution, Electrochim. Acta 200, 142 (2016)
https://doi.org/10.1016/j.electacta.2016.03.186
|
13 |
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
https://doi.org/10.1021/acsami.7b01709
|
14 |
X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, and H. Zhang, Few‐layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater. 7(19), 1700396 (2017)
https://doi.org/10.1002/aenm.201700396
|
15 |
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices, Mater. Horiz. 4(6), 997 (2017)
https://doi.org/10.1039/C7MH00543A
|
16 |
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao, S. Datta, Y. Li, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect, Adv. Opt. Mater. 3(12), 1769 (2015)
https://doi.org/10.1002/adom.201500347
|
17 |
K. Wang, R. Liang, and P. Qiu, Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy, IEEE Photonics J. 7(6), 1 (2015)
https://doi.org/10.1109/JPHOT.2015.2505145
|
18 |
M. Liu, Z. R. Cai, S. Hu, A. P. Luo, C. J. Zhao, H. Zhang, W. C. Xu, and Z. C. Luo, Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device, Opt. Lett. 40(20), 4767 (2015)
https://doi.org/10.1364/OL.40.004767
|
19 |
Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, Large energy, wavelength widely tunable, topological insulator Q-switched erbiumdoped fiber laser, IEEE J. Sel. Top. Quantum Electron. 20(5), 315 (2014)
https://doi.org/10.1109/JSTQE.2013.2295196
|
20 |
P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27(3), 264 (2015)
https://doi.org/10.1109/LPT.2014.2361915
|
21 |
X. Jiang, S, Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, Broadband nonlinear photonics in fewlayer MXene Ti3C2Tx (T= F, O, or OH), Laser Photonics Rev. 12 (2018)
https://doi.org/10.1002/lpor.201700229
|
22 |
D. Wang, M. Zhang, Z. Li, and Y. Cui, Flexible optical cross-connect structures supporting WDM multicast with multiple pumps for multiple channels, IEEE Photonics J. 6(6), 1 (2014)
https://doi.org/10.1109/JPHOT.2014.2374614
|
23 |
P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao, C. Yang, H. Hu, and Y. Yao, Q-switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber, IEEE Photonics Technol. Lett. 26(19), 1912 (2014)
https://doi.org/10.1109/LPT.2014.2341832
|
24 |
H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers, Opt. Commun. 283(17), 3334 (2010)
https://doi.org/10.1016/j.optcom.2010.04.064
|
25 |
Y. Song, H. Zhang, D. Tang, and D. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser, Opt. Express 20(24), 27283 (2012)
https://doi.org/10.1364/OE.20.027283
|
26 |
Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
https://doi.org/10.1109/JPHOT.2012.2199102
|
27 |
G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, Improved transfer quality of CVDgrown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics, ACS Appl. Mater. Interfaces 5(20), 10288 (2013)
https://doi.org/10.1021/am403205v
|
28 |
R. Zhou, P. Tang, Y. Chen, S. Chen, C. Zhao, H. Zhang, and S. Wen, Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber, Appl. Opt. 53(2), 254 (2014)
https://doi.org/10.1364/AO.53.000254
|
29 |
Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
https://doi.org/10.1038/srep16372
|
30 |
L. Miao, Y. Jiang, S. Lu, B. Shi, C. Zhao, H. Zhang, and S. Wen, Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime, Photon. Res. 3(5), 214 (2015)
https://doi.org/10.1364/PRJ.3.000214
|
31 |
H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, and Q. Bao, Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation, ACS Photonics 2(7), 832 (2015)
https://doi.org/10.1021/acsphotonics.5b00193
|
32 |
Y. F. Song, H. Zhang, L. M. Zhao, D. Y. Shen, and D. Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene, Opt. Express 24(2), 1814 (2016)
https://doi.org/10.1364/OE.24.001814
|
33 |
M. Liu, A. Luo, X. Zheng, N. Zhao, H. Liu, Z. Luo, W. Xu, Y. Chen, C. Zhao, and H. Zhang, Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser, J. Lightwave Technol. 33(10), 2056 (2015)
https://doi.org/10.1109/JLT.2015.2396939
|
34 |
R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐ property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
https://doi.org/10.1063/1.453405
|
35 |
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
https://doi.org/10.1039/c3cs60388a
|
36 |
J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, Photonics and optoelectronics of two-dimensional materials beyond graphene, Nanotechnology 27(46), 462001 (2016)
https://doi.org/10.1088/0957-4484/27/46/462001
|
37 |
H. Bao, L. Wang, C. Li, and J. Luo, Structural characterization and identification of graphdiyne and graphdiynebased materials, ACS Appl. Mater. Interfaces 11(3), 2717 (2019)
https://doi.org/10.1021/acsami.8b05051
|
38 |
Q. Bao, H. Zhang, and C. Pan, Electric-field-induced microstructural transformation of carbon nanotubes, Appl. Phys. Lett. 89(6), 063124 (2006)
https://doi.org/10.1063/1.2227620
|
39 |
Q. Bao, H. Zhang, and C. Pan, Simulation for growth of multi-walled carbon nanotubes in electric field, Comput. Mater. Sci. 39(3), 616 (2007)
https://doi.org/10.1016/j.commatsci.2006.08.020
|
40 |
S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, and X. Chen, Healable, transparent, room‐temperature electronic sensors based on carbon nanotube network‐coated polyelectrolyte multilayers, Small 11(43), 5807 (2015)
https://doi.org/10.1002/smll.201502169
|
41 |
P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. Sun, and X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing, Small 11(40), 5409 (2015)
https://doi.org/10.1002/smll.201501772
|
42 |
H. J. Li, L. L. Wang, H. Zhang, Z. R. Huang, B. Sun, X. Zhai, and S. C. Wen, Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter, Appl. Phys. Express 7(2), 024301 (2014)
https://doi.org/10.7567/APEX.7.024301
|
43 |
Z. Huang, W. Han, H, Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)
https://doi.org/10.1088/2053-1583/2/3/035011
|
44 |
R. Wang, X. Li, Z. Wang, and H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive, Nano Energy 34, 131 (2017)
https://doi.org/10.1016/j.nanoen.2017.02.037
|
45 |
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
https://doi.org/10.1039/c1cc15129k
|
46 |
S. W. Cranford, and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
https://doi.org/10.1039/c2nr30921a
|
47 |
H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, and D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(13), 4281 (2014)
https://doi.org/10.1039/C3CS60437C
|
48 |
P. Wu, P. Du, H. Zhang, and C. Cai, Graphdiyne as a metal-free catalyst for low-temperature CO oxidation, Phys. Chem. Chem. Phys. 16(12), 5640 (2014)
https://doi.org/10.1039/C3CP55121K
|
49 |
H. Ren, H. Shao, L. Zhang, D. Guo, Q. Jin, R. Yu, L. Wang, Y. Li, Y. Wang, H. Zhao, and D. Wang, A new graphdiyne nanosheet/Pt nanoparticle‐based counter electrode material with enhanced catalytic activity for dye‐sensitized solar cells, Adv. Energy Mater. 5(12), 1500296 (2015)
https://doi.org/10.1002/aenm.201500296
|
50 |
K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
https://doi.org/10.1021/jp212181h
|
51 |
H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
https://doi.org/10.1063/1.4789635
|
52 |
Z. Chen, C. Molina‐Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
https://doi.org/10.1002/andp.201700056
|
53 |
Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, and Y. Li, Synthesis and properties of 2D carbon graphdiyne, Acc. Chem. Res. 50(10), 2470 (2017)
https://doi.org/10.1021/acs.accounts.7b00205
|
54 |
Z. Jia, Z. Zuo, Y. Yi, H. Liu, D. Li, Y. Li, and Y. Li, Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage, Nano Energy 33, 343 (2017)
https://doi.org/10.1016/j.nanoen.2017.01.049
|
55 |
J. He, N. Wang, Z. Yang, X. Shen, K. Wang, C. Huang, Y. Yi, Z. Tu, and Y. Li, Fluoride graphdiyne as a freestanding electrode displaying ultra-stable and extraordinary high Li storage performance, Energy Environ. Sci. 11(10), 2893 (2018)
https://doi.org/10.1039/C8EE01642A
|
56 |
C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev. 118(16), 7744 (2018)
https://doi.org/10.1021/acs.chemrev.8b00288
|
57 |
M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
https://doi.org/10.1002/anie.199708361
|
58 |
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
https://doi.org/10.1103/PhysRevB.58.11009
|
59 |
M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
https://doi.org/10.1351/pac200880030519
|
60 |
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(19), 3256 (2010)
https://doi.org/10.1039/b922733d
|
61 |
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
https://doi.org/10.1021/nn102472s
|
62 |
K. Wang, N. Wang, J. He, Z. Yang, X. Shen, and C. Huang, Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors, ACS Appl. Mater. Interfaces 9(46), 40604 (2017)
https://doi.org/10.1021/acsami.7b11420
|
63 |
C. Xie, N. Wang, X. Li, G. Xu, and C. Huang, Research on the preparation of graphdiyne and its derivatives, Chemistry 26(3), 569 (2020)
https://doi.org/10.1002/chem.202080361
|
64 |
N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, and D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment, ACS Nano 7(2), 1504 (2013)
https://doi.org/10.1021/nn305288z
|
65 |
R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
https://doi.org/10.1039/C4NR03185G
|
66 |
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
https://doi.org/10.1039/C4CC08706B
|
67 |
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Robust superhydrophobic foam: A graphdiyne‐based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
https://doi.org/10.1002/adma.201504407
|
68 |
N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, and D. Wang, Few‐layer graphdiyne nanosheets applied for multiplexed real‐time DNA detection, Adv. Mater. 29(18), 1606755 (2017)
https://doi.org/10.1002/adma.201606755
|
69 |
N. Yang, in: The Preparation of Nano Composites and Their Applications in Solar Energy Conversion93–110, Springer, 2017
https://doi.org/10.1007/978-3-662-53485-4_5
|
70 |
C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, and W. Chen, Highperformance graphdiyne-based electrochemical actuators, Nat. Commun. 9(1), 752 (2018)
https://doi.org/10.1038/s41467-018-03095-1
|
71 |
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
https://doi.org/10.1038/s41467-018-03896-4
|
72 |
Z. Shi, X. Li, Y. Zhang, H. Li, Y. Zhao, P. Guo, and Y. Guo, Graphdiyne for ultrashort pulse generation in an erbium-doped hybrid mode-locked fiber laser, Front. Phys. 7, 150 (2019)
https://doi.org/10.3389/fphy.2019.00150
|
73 |
W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, and L. Mao, Graphdiyne oxide: A new carbon nanozyme, Chem. Commun. 56(38), 5115 (2020)
https://doi.org/10.1039/D0CC01840F
|
74 |
T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, and X. Chen, A flexible transparent colorimetric wrist strap sensor, Nanoscale 9(2), 869 (2017)
https://doi.org/10.1039/C6NR08265C
|
75 |
Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2, 035011 (2015)
https://doi.org/10.1088/2053-1583/2/3/035011
|
76 |
J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers, Opt. Express 23(17), 22643 (2015)
https://doi.org/10.1364/OE.23.022643
|
77 |
Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber, Opt. Express 24(23), 25933 (2016)
https://doi.org/10.1364/OE.24.025933
|
78 |
B. X. Wang and G. Z. Wang, Quad-band terahertz absorber based on a simple design of metamaterial resonator, IEEE Photonics J. 8(6), 1 (2016)
https://doi.org/10.1109/JPHOT.2016.2633560
|
79 |
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang, Black phosphorus based all-optical-signalprocessing toward high performances and enhanced stability, ACS Photonics 4(6), 1466 (2017)
https://doi.org/10.1021/acsphotonics.7b00231
|
80 |
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep. 7(1), 42357 (2017)
https://doi.org/10.1038/srep42357
|
81 |
Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, and D. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics, J. Mater. Chem. C 5(12), 3007 (2017)
https://doi.org/10.1039/C7TC00071E
|
82 |
Z. Chu, J. Liu, Z. Guo, and H. Zhang, 2 m passively Q-switched laser based on black phosphorus, Opt. Mater. Express 6(7), 2374 (2016)
https://doi.org/10.1364/OME.6.002374
|
83 |
J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region, Opt. Express 24(26), 30289 (2016)
https://doi.org/10.1364/OE.24.030289
|
84 |
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, and H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector, Adv. Funct. Mater. 27(18), 1606834 (2017)
https://doi.org/10.1002/adfm.201606834
|
85 |
J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and modelocked fiber lasers, Sci. Rep. 6(1), 30361 (2016)
https://doi.org/10.1038/srep30361
|
86 |
C. Ge, J. Chen, S. Tang, Y. Du, and N. Tang, Review of the electronic, optical, and magnetic properties of graphdiyne: From theories to experiments, ACS Appl. Mater. Interfaces 11(3), 2707 (2019)
https://doi.org/10.1021/acsami.8b03413
|
87 |
R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Carbon nanotubes – the route toward applications, Science 297(5582), 787 (2002)
https://doi.org/10.1126/science.1060928
|
88 |
Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, and X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure, Carbon 136, 248 (2018)
https://doi.org/10.1016/j.carbon.2018.04.081
|
89 |
C. Yang, Y. Li, Y. Chen, Q. Li, L. Wu, and X. Cui, Mechanochemical synthesis of ‐graphyne with enhanced lithium storage performance, Small 15(8), 1804710 (2019)
https://doi.org/10.1002/smll.201804710
|
90 |
S. W. Cranford, D. B. Brommer, and M. Buehler, Extended graphynes: Simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
https://doi.org/10.1039/c2nr31644g
|
91 |
J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, J. Phys. Chem. C 115(42), 20466 (2011)
https://doi.org/10.1021/jp206751m
|
92 |
J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
https://doi.org/10.1063/1.3583476
|
93 |
Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
https://doi.org/10.1021/jp4021189
|
94 |
T. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon–carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene, Struct. Chem. 21(6), 1155 (2010)
https://doi.org/10.1007/s11224-010-9670-2
|
95 |
A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
https://doi.org/10.1016/j.progsolidstchem.2012.12.001
|
96 |
J. Carper, Vol. 124192-+ (Bowker magazine group cahners magazine division 249 W 17TH ST, New York, 1999
|
97 |
Y. Yang and X. Xu, Mechanical properties of graphyne and its family–A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
https://doi.org/10.1016/j.commatsci.2012.03.052
|
98 |
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
|
99 |
H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Adv. 1(5), 768 (2011)
https://doi.org/10.1039/c1ra00481f
|
100 |
M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, and M. Faghihnasiri, Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption, Solid State Commun. 152(20), 1885 (2012)
https://doi.org/10.1016/j.ssc.2012.07.024
|
101 |
Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: A first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
https://doi.org/10.1039/c2cp42387a
|
102 |
Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
https://doi.org/10.1016/j.physb.2012.07.026
|
103 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme, Nature 438, 197 (2005)
https://doi.org/10.1038/nature04233
|
104 |
D. Malko, C. Neiss, F. Viñes, and A. Görling, Competition for graphene: Graphynes with direction-dependent Dirac cones, Phys. Rev. Lett. 108(8), 086804 (2012)
https://doi.org/10.1103/PhysRevLett.108.086804
|
105 |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
|
106 |
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
|
107 |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
|
108 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
109 |
J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, H. Peng, J. Sun, E. Trushin, and A. Görling, Understanding band gaps of solids in generalized Kohn–Sham theory, Proc. Natl. Acad. Sci. USA 114(11), 2801 (2017)
https://doi.org/10.1073/pnas.1621352114
|
110 |
E. N. Economou, Green’s Functions in Quantum Physics, Vol. 7, Springer Science & Business Media, 2006
https://doi.org/10.1007/3-540-28841-4
|
111 |
L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. 139(3A), A796 (1965)
https://doi.org/10.1103/PhysRev.139.A796
|
112 |
M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
https://doi.org/10.1103/PhysRevB.34.5390
|
113 |
F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52(7–8), 555 (1929)
https://doi.org/10.1007/BF01339455
|
114 |
J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
https://doi.org/10.1103/PhysRev.94.1498
|
115 |
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65(16), 165401 (2002)
https://doi.org/10.1103/PhysRevB.65.165401
|
116 |
J. S. Wang, J. Wang, and J. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
|
117 |
Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phononphonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B 78(22), 224303 (2008)
https://doi.org/10.1103/PhysRevB.78.224303
|
118 |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
|
119 |
X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, and Y. Li, Self-catalyzed growth of large-area nanofilms of two-dimensional carbon, Sci. Rep. 5(1), 7756 (2015)
https://doi.org/10.1038/srep07756
|
120 |
R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, and S. Zhang, Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil, Adv. Mater. 29(18), 1604665 (2017)
https://doi.org/10.1002/adma.201604665
|
121 |
J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang, and Z. Liu, Synthesis of ultrathin graphdiyne film using a surface template, ACS Appl. Mater. Interfaces 11(3), 2632 (2019)
https://doi.org/10.1021/acsami.8b02612
|
122 |
F. Zhao, In situ growth of graphdiyne on arbitrary substrates with a controlled-release method, Chem. Commun. 54, 6004 (2018)
https://doi.org/10.1039/C8CC03006E
|
123 |
Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, J. Gao, T. Jiu, and C. Huang, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces 11(3), 2608 (2019)
https://doi.org/10.1021/acsami.8b01823
|
124 |
G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, and Y. Li, Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission, J. Phys. Chem. C 115(6), 2611 (2011)
https://doi.org/10.1021/jp107996f
|
125 |
X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Construction of graphdiyne nanowires with highconductivity and mobility, Dalton Transactions 41, 730 (2012)
https://doi.org/10.1039/C1DT11641J
|
126 |
B. G. Shohany, M. R. Roknabadi, and A. Kompany, Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes, Physica E 84, 146 (2016)
https://doi.org/10.1016/j.physe.2016.05.040
|
127 |
L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H. J. Gao, Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures, Appl. Phys. Lett. 98(17), 173102 (2011)
https://doi.org/10.1063/1.3583507
|
128 |
X. Gao, H. Ren, J. Zhou, R. Du, C. Yin, R. Liu, H. Peng, L. Tong, Z. Liu, and J. Zhang, Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation, Chem. Mater. 29(14), 5777 (2017)
https://doi.org/10.1021/acs.chemmater.7b01838
|
129 |
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
https://doi.org/10.1021/jacs.5b04057
|
130 |
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, A graphdiyne-based hierarchical architecture for oil/water separation, Adv. Mater. 28(1), 168 (2016)
https://doi.org/10.1002/adma.201504407
|
131 |
P. Prabakaran, S. Satapathy, E. Prasad, and S. Sankararaman, Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics, J. Mater. Chem. C 6, 380, (2018)
https://doi.org/10.1039/C7TC04655C
|
132 |
X. Gao, J. Zhou, R. Du, Z. Xie, S. Deng, R. Liu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29, 1605308 (2017)
https://doi.org/10.1002/adma.201605308
|
133 |
R. Matsuoka, R. Sakamoto, K. Hoshiko, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/ liquid interface, J. Am. Chem. Soc. 139(8), 3145 (2017)
https://doi.org/10.1021/jacs.6b12776
|
134 |
R. Toyoda, R. Shiotsuki, N. Fukui, K. Wada, H. Maeda, R. Sakamoto, S. Sasaki, H. Masunaga, K. Nagashio, and H. Nishihara, Expansion of the graphdiyne family: A triphenylene-cored analogue, ACS Appl. Mater. Interfaces 11(3), 2730 (2018)
https://doi.org/10.1021/acsami.8b00743
|
135 |
X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li, and Y. Zhao, Interfacial synthesis of conjugated two-dimensional N-graphdiyne, ACS Appl. Mater. Interfaces 10(1), 53 (2018)
https://doi.org/10.1021/acsami.7b17326
|
136 |
H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, and Y. Li, Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes, Angewandte Chemie International Edition 57(3), 774 (2018)
https://doi.org/10.1002/anie.201711366
|
137 |
S. S. Wang, H. B. Liu, X. N. Kan, L. Wang, Y. H. Chen, B. Su, Y. L. Li, and L. Jiang, Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays, Small 13(4), 1602265 (2017)
https://doi.org/10.1002/smll.201602265
|
138 |
Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li, and Y. Li, A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode, Chem. Commun. 53(57), 8074 (2017)
https://doi.org/10.1039/C7CC03200E
|
139 |
H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, and Y. Li, N-doped graphdiyne for highperformance electrochemical electrodes, Nano Energy 44, 144 (2018)
https://doi.org/10.1016/j.nanoen.2017.11.072
|
140 |
J. Li, J. Xu, Z. Xie, X. Gao, J. Zhou, Y. Xiong, C. Chen, J. Zhang, and Z. Liu, Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application, Adv. Mater. 30(20), 1800548 (2018)
https://doi.org/10.1002/adma.201800548
|
141 |
Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101(8), 081909 (2012)
https://doi.org/10.1063/1.4747719
|
142 |
A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes, physica status solidi (b) 248, 1879 (2011)
https://doi.org/10.1002/pssb.201046583
|
143 |
J. Chen, J. Xi, D. Wang, and Z. Shuai, Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction, J. Phys. Chem. Lett. 4(9), 1443 (2013)
https://doi.org/10.1021/jz4005587
|
144 |
J. Xi, D. Wang, Y. Yi, and Z. Shuai, Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach, J. Chem. Phys. 141(3), 034704 (2014)
https://doi.org/10.1063/1.4887538
|
145 |
B. G. Kim and H. J. Choi, Graphyne: Hexagonal network of carbon with versatile Dirac cones, Phys. Rev. B 86(11), 115435 (2012)
https://doi.org/10.1103/PhysRevB.86.115435
|
146 |
J. He, S. Y. Ma, P. Zhou, C. X. Zhang, C. He, and L. Z. Sun, Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+Ucalculations, J. Phys. Chem. C 116(50), 26313 (2012)
https://doi.org/10.1021/jp307408u
|
147 |
H. Bu, M. Zhao, A. Wang, and X. Wang, First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons, Carbon 65, 341 (2013)
https://doi.org/10.1016/j.carbon.2013.08.035
|
148 |
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
https://doi.org/10.1103/PhysRevB.84.075439
|
149 |
Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, and J. Lu, Structural and electronic properties of bilayer and trilayer graphdiyne, Nanoscale 4(13), 3990 (2012)
https://doi.org/10.1039/c2nr12026g
|
150 |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
|
151 |
X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, and J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv. 4(7), eaat6378 (2018)
https://doi.org/10.1126/sciadv.aat6378
|
152 |
C. Li, X. Lu, Y. Han, S. Tang, Y. Ding, R. Liu, H. Bao, Y. Li, J. Luo, and T. Lu, Direct imaging and determination of the crystal structure of six-layered graphdiyne, Nano Res. 11(3), 1714 (2018)
https://doi.org/10.1007/s12274-017-1789-7
|
153 |
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc. 137(24), 7596 (2015)
https://doi.org/10.1021/jacs.5b04057
|
154 |
S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong, Z. Liu, J. Zhang, and Z. Liu, Raman spectra and corresponding strain effects in graphyne and graphdiyne, J. Phys. Chem. C 120(19), 10605 (2016)
https://doi.org/10.1021/acs.jpcc.5b12388
|
155 |
J. Zhong, J. Wang, J. G. Zhou, B. H. Mao, C. H. Liu, H. B. Liu, Y. L. Li, T. K. Sham, X. H. Sun, and S. D. Wang, Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy, J. Phys. Chem. C 117(11), 5931 (2013)
https://doi.org/10.1021/jp310013z
|
156 |
Y. Zheng, Y. Chen, L. Lin, Y. Sun, H. Liu, Y. Li, Y. Du, and N. Tang, Intrinsic magnetism of graphdiyne, Appl. Phys. Lett. 111(3), 033101 (2017)
https://doi.org/10.1063/1.4993916
|
157 |
X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)
https://doi.org/10.1039/C1CS15078B
|
158 |
J. Zhou, J. Zhang, and Z. Liu, Advanced progress in the synthesis of graphdiyne, Acta Physico-Chimica Sinica 34(9), 977 (2018)
|
159 |
J. Xi, Y. Nakamura, T. Zhao, D. Wang, and Z. Shuai, Theoretical studies on the deformation potential, electron-phonon coupling, and carrier transports of layered systems, Acta Physico-Chimica Sinica 34(9), 961 (2018)
https://doi.org/10.3866/PKU.WHXB201802051
|
160 |
J. Lee, Y. Li, J. Tang, and X. Cui, Synthesis of hydrogen substituted graphyne through mechanochemistry and its electrocatalytic properties, Acta Physico-Chimica Sinica 34(9), 1080 (2018)
https://doi.org/10.3866/PKU.WHXB201802262
|
161 |
M. Liu and Y. Li, Graphdiyne: From synthesis to application, Acta Physico-Chimica Sinica 34(9), 959 (2018)
https://doi.org/10.3866/PKU.WHXB201803232
|
162 |
X. Chen and S. Zhang, Modulation of molecular sensing properties of graphdiyne based on 3d impurities, Acta Physico-Chimica Sinica 34(9), 1061 (2018)
|
163 |
X. Shen, J. He, N. Wang, and C. Huang, Graphdiyne for electrochemical energy storage devices, Acta Physico-Chimica Sinica 34(9), 1029 (2018)
https://doi.org/10.3866/PKU.WHXB201801122
|
164 |
X. Lu, Y. Han, and T. Lu, Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions, Acta Physico-Chimica Sinica 34(9), 1014 (2018)
https://doi.org/10.3866/PKU.WHXB201801171
|
165 |
Y. Chen, J. Li, and H. Liu, Preparation of graphdiyneorganic conjugated molecular composite materials for lithium ion batteries, Acta Physico-Chimica Sinica 34(9), 1074 (2018)
|
166 |
Y. Zhao, L. Zhang, J. Qi, Q. Jin, K. Lin, and D. Wang, Graphdiyne with enhanced ability for electron transfer, Wuli Huaxue Xuebao 34(9), 1048 (2018)
|
167 |
Y. Li and Y. Li, Chemical modification and functionalization of graphdiyne, Acta Physico-Chimica Sinica 34(9), 992 (2018)
|
168 |
Z. Huang, Z. Yu, Y. Li, and J. Wang, ZnO ultraviolet photodetector modified with graphdiyne, Acta Physico-Chimica Sinica 34(9), 1088 (2018)
|
169 |
S. Wang, L. Yi, J. E. Halpert, X. Lai, Y. Liu, H. Cao, R. Yu, D. Wang, and Y. Li, A novel and highly efficient photocatalyst based on P25–Graphdiyne nanocomposite, Small 8(2), 265 (2012)
https://doi.org/10.1002/smll.201101686
|
170 |
Y. Y. Liu, First-principles study on new photocatalytic materials graphdiyne-TiO2, Acta Chimica Sinica 71(2), 260 (2013)
https://doi.org/10.6023/A12090705
|
171 |
S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. J. Kim, and G. Venugopal, Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C 119(38), 22057 (2015)
https://doi.org/10.1021/acs.jpcc.5b06138
|
172 |
X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
https://doi.org/10.1039/C4CP04683H
|
173 |
H. Y. Si, C. J. Mao, J. Y. Zhou, X. F. Rong, Q. X. Deng, S. L. Chen, J. J. Zhao, X. G. Sun, Y. M. Shen, W. J. Feng, P. Gao, and J. Zhang, Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne, Carbon 132, 598 (2018)
https://doi.org/10.1016/j.carbon.2018.02.107
|
174 |
S. Guo, Y. Jiang, F. Wu, P. Yu, H. Liu, Y. Li, and L. Mao, Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation, ACS Appl. Mater. Interfaces 11(3), 2684 (2019)
https://doi.org/10.1021/acsami.8b04463
|
175 |
J. X. Lv, Z. M. Zhang, J. Wang, X. L. Lu, W. Zhang, and T. B. Lu, In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production, ACS Appl. Mater. Interfaces 11(3), 2655 (2019)
https://doi.org/10.1021/acsami.8b03326
|
176 |
B. K. Das, D. Sen, and K. K. Chattopadhyay, Nitrogen doping in acetylene bonded two dimensional carbon crystals: Ab-initioforecast of electrocatalytic activities vis-à-vis boron doping, Carbon 105, 330 (2016)
https://doi.org/10.1016/j.carbon.2016.04.055
|
177 |
B. K. Das, D. Sen, and K. K. Chattopadhyay, Implications of boron doping on electrocatalytic activities of graphyne and graphdiyne families: A first principles study, Phys. Chem. Chem. Phys. 18(4), 2949 (2016)
https://doi.org/10.1039/C5CP05768J
|
178 |
B. Kang and J. Y. Lee, Graphynes as promising cathode material of fuel cell: Improvement of oxygen reduction efficiency, J. Phys. Chem. C 118(22), 12035 (2014)
https://doi.org/10.1021/jp502780y
|
179 |
X. Chen, Q. Qiao, L. An, and D. Xia, Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study, J. Phys. Chem. C 119(21), 11493 (2015)
https://doi.org/10.1021/acs.jpcc.5b02505
|
180 |
S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu, and B. Li, Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium, J. Mater. Chem. A Mater. Energy Sustain. 4(13), 4738 (2016)
https://doi.org/10.1039/C5TA10579J
|
181 |
A. Mohajeri and A. Shahsavar, Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/ sulfur dual doping versus oxygen containing functional groups, J. Mater. Sci. 52(9), 5366 (2017)
https://doi.org/10.1007/s10853-017-0779-1
|
182 |
Q. Lv, W. Si, Z. Yang, N. Wang, Z. Tu, Y. Yi, C. Huang, L. Jiang, M. Zhang, J. He, and Y. Long, Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces 9(35), 29744 (2017)
https://doi.org/10.1021/acsami.7b08115
|
183 |
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271), 361 (2016)
https://doi.org/10.1126/science.aad0832
|
184 |
Y. Xue, Y. Guo, Y. Yi, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Self-catalyzed growth of Cu@graphdiyne core– shell nanowires array for high efficient hydrogen evolution cathode, Nano Energy 30, 858 (2016)
https://doi.org/10.1016/j.nanoen.2016.09.005
|
185 |
Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, and Y. Li, Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH, ACS Appl. Mater. Interfaces 8(45), 31083 (2016)
https://doi.org/10.1021/acsami.6b12655
|
186 |
X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, and T. B. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution, Angewandte Chemie International Edition 57(30), 9382 (2018)
https://doi.org/10.1002/anie.201804817
|
187 |
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, and Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun. 9(1), 1460 (2018)
https://doi.org/10.1038/s41467-018-03896-4
|
188 |
Y. Xue, Z. Zuo, Y. Li, H. Liu, and Y. Li, Graphdiyne‐supported NiCo2S4 nanowires: A highly active and stable 3D bifunctional electrode material, Small 13(31), 1700936 (2017)
https://doi.org/10.1002/smll.201700936
|
189 |
H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Li, Z. Zuo, Y. Zhao, Z. Li, and Y. Li, Efficient hydrogen production on a 3D flexible heterojunction material, Adv. Mater. 30(21), 1707082 (2018)
https://doi.org/10.1002/adma.201707082
|
190 |
G. Shi, C. Yu, Z. Fan, J. Li, and M. Yuan, Graphdiynesupported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution, ACS Appl. Mater. Interfaces 11(3), 2662 (2019)
https://doi.org/10.1021/acsami.8b03345
|
191 |
P. Kuang, B. Zhu, Y. Li, H. Liu, J. Yu, and K. Fan, Graphdiyne: A superior carbon additive to boost the activity of water oxidation catalysts, Nanoscale Horizons 3(3), 317 (2018).
https://doi.org/10.1039/C8NH00027A
|
192 |
Y. Yao, Z. Jin, Y. Chen, Z. Gao, and S. Liu, Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon 129, 228 (2018)
https://doi.org/10.1016/j.carbon.2017.12.024
|
193 |
J. Li, X. Gao, X. Jiang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A promising catalystsupport to stabilize cobalt nanoparticles for oxygen evolution, ACS Catal. 7(8), 5209 (2017)
https://doi.org/10.1021/acscatal.7b01781
|
194 |
H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Zhao, Z. Li, and Y. Li, Controlled growth of MoS2 nanosheets on 2D Ndoped graphdiyne nanolayers for highly associated effects on water reduction, Adv. Funct. Mater. 28(19), 1707564 (2018)
https://doi.org/10.1002/adfm.201707564
|
195 |
L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, and Y. Li, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, J. Am. Chem. Soc. 141(27), 10677 (2019)
https://doi.org/10.1021/jacs.9b03004
|
196 |
Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui, Y. Liu, C. Xing, C. Zhang, D. Zhang, Z. Wang, X. Chen, Y. Gao, B. Huang, and Y. Li, Graphdiyne interface engineering: Highly active and selective ammonia synthesis, Angew. Chem. Int. Ed. 59(31), 13021 (2020)
https://doi.org/10.1002/anie.202004213
|
197 |
C. Xing, C. Wu, Y. Xue, Y. Zhao, L. Hui, H. Yu, Y. Liu, Q. Pan, Y. Fang, C. Zhang, D. Zhang, X. Chen, and Y. Li, A highly selective and active metal-free catalyst for ammonia production, Nanoscale Horizons 5(8), 1274 (2020)
https://doi.org/10.1039/D0NH00287A
|
198 |
X. Gao, J. Li, R. Du, J. Zhou, M. Y. Huang, R. Liu, J. Li, Z. Xie, L. Z. Wu, Z. Liu, and J. Zhang, Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell, Adv. Mater. 29(9), 1605308 (2017)
https://doi.org/10.1002/adma.201605308
|
199 |
Y. Y. Han, X. L. Lu, S. F. Tang, X. P. Yin, Z. W. Wei, and T. B. Lu, Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride, Adv. Energy Mater. 8(16), 1702992 (2018)
https://doi.org/10.1002/aenm.201702992
|
200 |
L. Hui, D. Jia, H. Yu, Y. Xue, and Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting, ACS Appl. Mater. Interfaces 11(3), 2618 (2019)
https://doi.org/10.1021/acsami.8b01887
|
201 |
L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang, and Y. Li, Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting, Adv. Energy Mater. 8(20), 1800175 (2018)
https://doi.org/10.1002/aenm.201800175
|
202 |
L. Hui, Y. Xue, B. Huang, H. Yu, C. Zhang, D. Zhang, D. Jia, Y. Zhao, Y. Li, H. Liu, and Y. Li, Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun. 9(1), 5309 (2018)
https://doi.org/10.1038/s41467-018-07790-x
|
203 |
Y. Xue, Y. Li, J. Zhang, Z. Liu, and Y. Zhao, 2D graphdiyne materials: Challenges and opportunities in energy field, Sci. China Chem. 61(7), 765 (2018)
https://doi.org/10.1007/s11426-018-9270-y
|
204 |
H. Yu, Y. Xue, and Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater. 31(42), 1803101 (2019)
https://doi.org/10.1002/adma.201803101
|
205 |
A. Seif, M. J. López, A. Granja-DelRío, K. Azizi, and J. A. Alonso, Adsorption and growth of palladium clusters on graphdiyne, Phys. Chem. Chem. Phys. 19(29), 19094 (2017)
https://doi.org/10.1039/C7CP03263C
|
206 |
H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
https://doi.org/10.1021/ja5131337
|
207 |
Z. Lu, S. Li, P. Lv, C. He, D. Ma, and Z. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM= Pd, Pt, Rh and Ir): The implications for NM growing, Appl. Surf. Sci. 360, 1 (2016)
https://doi.org/10.1016/j.apsusc.2015.10.219
|
208 |
A. H. Mashhadzadeh, A. M. Vahedi, M. Ardjmand, and M. G. Ahangari, Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study, Superlattices Microstruct. 100, 1094 (2016)
https://doi.org/10.1016/j.spmi.2016.10.079
|
209 |
Z. W. Chen, Z. Wen, and Q. Jiang, Rational design of Ag38 cluster supported by graphdiyne for catalytic CO oxidation, J. Phys. Chem. C 121(6), 3463 (2017)
https://doi.org/10.1021/acs.jpcc.6b12434
|
210 |
Z. Z. Lin, Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation, Carbon 108, 343 (2016)
https://doi.org/10.1016/j.carbon.2016.07.040
|
211 |
Z. Z. Lin, Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst, Carbon 86, 301 (2015)
https://doi.org/10.1016/j.carbon.2015.02.014
|
212 |
H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
https://doi.org/10.1021/jp406081v
|
213 |
H. Shen, Y. Li, and Z. Shi, A novel graphdiyne-based catalyst for effective hydrogenation reaction, ACS Appl. Mater. Interfaces 11(3), 2563 (2019)
https://doi.org/10.1021/acsami.8b00566
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|