|
|
Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction |
Mosayeb Naseri1( ), Shiru Lin2, Jaafar Jalilian3, Jinxing Gu2, Zhongfang Chen2( ) |
1. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran 2. Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA 3. Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran |
|
|
Abstract By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.
|
Keywords
2D materials
density functional calculations
wide bandgap semiconductors
|
Corresponding Author(s):
Mosayeb Naseri,Zhongfang Chen
|
Issue Date: 23 April 2018
|
|
1 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
2 |
Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
|
3 |
J. J. Zhao, H. S.Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
https://doi.org/10.1016/j.pmatsci.2016.04.001
|
4 |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
|
5 |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
|
6 |
M. Xu, T. Liang, M. Shi, and H. Chen, Graphenelike two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)
https://doi.org/10.1021/cr300263a
|
7 |
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
|
8 |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
|
9 |
G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)
https://doi.org/10.1103/PhysRevB.76.075131
|
10 |
X. Yu, S. Zhang, H. Zeng, and Q. J. Wang, Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector, Nano Energy 25, 34 (2016)
https://doi.org/10.1016/j.nanoen.2016.04.030
|
11 |
M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, and H. Zeng, A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14000 cm2·V−1·s−1, Nano Energy 28, 433 (2016)
https://doi.org/10.1016/j.nanoen.2016.08.058
|
12 |
J. Yang, Y. L. Jiang, L. J. Li, E. Muhire, and M. Z. Gao, High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation, Nanoscale 8(15), 8170 (2016)
https://doi.org/10.1039/C5NR09248E
|
13 |
P. K. Kanaujia, and G. V. Prakash, Laser-induced microstructuring of two-dimensional layered inorganic– organic perovskites, Phys. Chem. Chem. Phys. 18(14), 9666 (2016)
https://doi.org/10.1039/C6CP00357E
|
14 |
G. Qin, Z. Qin, W. Z. Fang, L. C. Zhang, S. Y. Yue, Q. B. Yan, M. Hu, and G. Su, Diverse anisotropy of phonon transport in two-dimensional group Iv–Vi compounds: A comparative study, Nanoscale 8(21), 11306 (2016)
https://doi.org/10.1039/C6NR01349J
|
15 |
Y. Yang, S. Umrao, S. Lai, and S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTx film, J. Phys. Chem. Lett. 8(4), 859 (2017)
https://doi.org/10.1021/acs.jpclett.6b03064
|
16 |
Z. Tan, Y. Wu, H. Hong, J. Yin, J. Zhang, L. Lin, M. Wang, X. Sun, L. Sun, Y. Huang, K. Liu, Z. Liu, and H. Peng, Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector, J. Am. Chem. Soc. 138(51), 16612 (2016)
https://doi.org/10.1021/jacs.6b11683
|
17 |
D. Yin, J. Feng, N. R. Jiang, R. Ma, Y. F. Liu, and H. B. Sun, Two-dimensional stretchable organic lightemitting devices with high efficiency, ACS Appl. Mater. Interfaces 8(45), 31166 (2016)
https://doi.org/10.1021/acsami.6b10328
|
18 |
Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6(1), 5 (2016)
https://doi.org/10.1002/wcms.1234
|
19 |
S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
https://doi.org/10.1002/anie.201507568
|
20 |
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)
https://doi.org/10.1103/PhysRevLett.109.056804
|
21 |
K. Shehzad, Y. Xu, C. Gao, and X. Duan, Threedimensional macro-structures of two-dimensional nanomaterials, Chem. Soc. Rev. 45(20), 5541 (2016)
https://doi.org/10.1039/C6CS00218H
|
22 |
P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
https://doi.org/10.1103/PhysRevB.90.121408
|
23 |
S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)
https://doi.org/10.1103/PhysRevB.89.195303
|
24 |
Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5(5), 360 (2015)
https://doi.org/10.1002/wcms.1224
|
25 |
X. Zhang, Z. Zhang, X. Zhao, D. Wu, and Z. Zhou, MnBx monolayers with quasi-planar hypercoordinate Mn atoms and unique magnetic and mechanical properties, FlatChem 4, 42 (2017)
https://doi.org/10.1016/j.flatc.2017.07.005
|
26 |
L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
|
27 |
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
|
28 |
H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)
https://doi.org/10.1021/acs.chemmater.5b04949
|
29 |
H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission, Chem. Commun. 52(54), 8409 (2016)
https://doi.org/10.1039/C6CC02778D
|
30 |
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van Der Waals epitaxy, Nat. Commun. 7, 13352 (2016)
https://doi.org/10.1038/ncomms13352
|
31 |
S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)
https://doi.org/10.1073/pnas.1416591112
|
32 |
A. Lopez-Bezanilla, and P. B. Littlewood, S–P-band inversion in a novel two-dimensional material,J. Phys. Chem. C 119(33), 19469 (2015)
https://doi.org/10.1021/acs.jpcc.5b04726
|
33 |
S. Zhang, J. Zhou, Q. Wang, and P. Jena, Beyond graphitic carbon nitride: Nitrogen-rich penta-CN2 sheet, J. Phys. Chem. C 120(7), 3993 (2016)
https://doi.org/10.1021/acs.jpcc.5b12510
|
34 |
F. Li, K. Tu, H. Zhang, and Z. Chen, Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: A computational investigation, Phys. Chem. Chem. Phys. 17(37), 24151 (2015)
https://doi.org/10.1039/C5CP03885E
|
35 |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
|
36 |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
|
37 |
R. W. Keyes, The electrical properties of black phosphorus, Phys. Rev. 92(3), 580 (1953)
https://doi.org/10.1103/PhysRev.92.580
|
38 |
Y. Takao, H. Asahina, and A. Morita, Electronic structure of black phosphorus in tight binding approach,J. Phys. Soc. Jpn. 50(10), 3362 (1981)
https://doi.org/10.1143/JPSJ.50.3362
|
39 |
D. Warschauer, Electrical and optical properties of crystalline black phosphorus, J. Appl. Phys. 34(7), 1853 (1963)
https://doi.org/10.1063/1.1729699
|
40 |
S. Narita, Y. Akahama, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, Electrical and optical properties of black phosphorus single crystals, Physica B+ C117–118, 422 (1983)
https://doi.org/10.1016/0378-4363(83)90547-8
|
41 |
Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, Synthesis and some properties of black phosphorus single crystals, Physica B+ C 105(1–3), 99 (1981)
https://doi.org/10.1016/0378-4363(81)90223-0
|
42 |
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
https://doi.org/10.1002/anie.201411246
|
43 |
P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)
https://doi.org/10.1002/adma.201602128
|
44 |
C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)
https://doi.org/10.1002/anie.201605298
|
45 |
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, An augmented PlaneWave+ Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013)
|
46 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
47 |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
|
48 |
R. Abt, C. Ambrosch-Draxl, and P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B194–196, 1451 (1994)
https://doi.org/10.1016/0921-4526(94)91225-4
|
49 |
X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55(16), 10355 (1997)
https://doi.org/10.1103/PhysRevB.55.10355
|
50 |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., Quantum espresso: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
https://doi.org/10.1088/0953-8984/21/39/395502
|
51 |
N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)
https://doi.org/10.1103/PhysRevB.43.1993
|
52 |
B. Delley, An all-electron numerical-method for solving the local density functional for polyatomic-molecules, J. Chem. Phys. 92(1), 508 (1990)
https://doi.org/10.1063/1.458452
|
53 |
B. Delley, From molecules to solids with the Dmol3 approach, J. Chem. Phys. 113(18), 7756 (2000)
https://doi.org/10.1063/1.1316015
|
54 |
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
https://doi.org/10.1063/1.463940
|
55 |
H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, and Y. Kwon, Cohesion energetics of carbon allotropes: Quantum Monte Carlo study, J. Chem. Phys. 140(11), 114702 (2014)
https://doi.org/10.1063/1.4867544
|
56 |
X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)
https://doi.org/10.1103/PhysRevLett.106.155703
|
57 |
J. Y. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, D. Zhao, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to Tcarbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683 (2017)
https://doi.org/10.1038/s41467-017-00817-9
|
58 |
N. Drummond, V. Zolyomi, and V. I. Fal’ko, Electrically tunable band gap in silicene, Phys. Rev. B 85(7), 075423 (2012)
https://doi.org/10.1103/PhysRevB.85.075423
|
59 |
Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7, 11488 (2016)
https://doi.org/10.1038/ncomms11488
|
60 |
G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)
https://doi.org/10.1039/C4CP04858J
|
61 |
L. F. Huang, P. L. Gong, and Z. Zeng, Phonon properties, thermal expansion, and thermomechanics of silicene and germanene, Phys. Rev. B 91(20), 205433 (2015)
https://doi.org/10.1103/PhysRevB.91.205433
|
62 |
Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)
https://doi.org/10.1103/PhysRevB.84.155413
|
63 |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
64 |
H. Zhang, D. Wu, Q. Tang, L. Liu, and Z. Zhou, Zno– Gan heterostructured nanosheets for solar energy harvesting: Computational studies based on hybrid density functional theory, J. Mater. Chem. A Mater. Energy Sustain. 1(6), 2231 (2013)
https://doi.org/10.1039/C2TA00706A
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|