|
|
Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy |
Zhi-Yue Zheng1, Yu-Hao Pan2,7, Teng-Fei Pei3, Rui Xu2, Kun-Qi Xu4, Le Lei2, Sabir Hussain5,6, Xiao-Jun Liu1, Li-Hong Bao3, Hong-Jun Gao3, Wei Ji2( ), Zhi-Hai Cheng2( ) |
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China 3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 5. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China 6. University of Chinese Academy of Sciences, Beijing 100049, China 7. China North Vehicle Research Institute, Beijing, China |
|
|
Abstract The interlayer bonding in two-dimensional (2D) materials is particularly important because it is not only related to their physical and chemical stability but also affects their mechanical, thermal, electronic, optical, and other properties. To address this issue, we report the direct characterization of the interlayer bonding in 2D SnSe using contact-resonance atomic force microscopy (CR-AFM) in this study. Site-specific CR spectroscopy and CR force spectroscopy measurements are performed on both SnSe and its supporting SiO2/Si substrate comparatively. Based on the cantilever and contact mechanic models, the contact stiffness and vertical Young’s modulus are evaluated in comparison with SiO2/Si as a reference material. The interlayer bonding of SnSe is further analyzed in combination with the semi-analytical model and density functional theory calculations. The direct characterization of interlayer interactions using this non-destructive methodology of CR-AFM would facilitate a better understanding of the physical and chemical properties of 2D layered materials, specifically for interlayer intercalation and vertical heterostructures.
|
Keywords
2D materials
interlayer bonding
contact-resonance atomic force microscopy
density functional theory
|
Corresponding Author(s):
Wei Ji,Zhi-Hai Cheng
|
Just Accepted Date: 03 September 2020
Issue Date: 16 October 2020
|
|
1 |
Y. Zhang, Y. L. Wang, Y. D. Que, and H. J. Gao, Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy, Chin. Phys. B 24(7), 078104 (2015)
https://doi.org/10.1088/1674-1056/24/7/078104
|
2 |
J. Y. Park, S. Kwon, and J. H. Kim, Nanomechanical and charge transport properties of two-dimensional atomic sheets, Adv. Mater. Interfaces 1(3), 1300089 (2014)
https://doi.org/10.1002/admi.201300089
|
3 |
W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
|
4 |
R. Wang, X. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
https://doi.org/10.1007/s11467-018-0859-y
|
5 |
D. Pesin and A. H. Macdonald, Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater. 11(5), 409 (2012)
https://doi.org/10.1038/nmat3305
|
6 |
T. LaMountain, E. J. Lenferink, Y. Chen, T. K. Stanev, and N. P. Stern, Environmental engineering of transition metal dichalcogenide optoelectronics, Front. Phys. 13(4), 138114 (2018)
https://doi.org/10.1007/s11467-018-0795-x
|
7 |
S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
https://doi.org/10.1007/s11467-018-0879-7
|
8 |
N. C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P. R. C. Kent, B. Dyatkin, G. Rother, W. T. Heller, A. C. T. van Duin, Y. Gogotsi, and E. Mamontov, Effect of metal ion intercalation on the structure of mxene and water dynamics on its internal surfaces, ACS Appl. Mater. Interfaces 8(14), 8859 (2016)
https://doi.org/10.1021/acsami.6b01490
|
9 |
Z. Zheng, R. Xu, K. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. H. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
https://doi.org/10.1007/s11467-019-0933-0
|
10 |
K. Yamasue, H. Fukidome and K. Funakubo, Interfacial charge states in graphene on sic studied by noncontact scanning nonlinear dielectric potentiometry, Phys. Rev. lett. 114(22), 226103 (2015)
https://doi.org/10.1103/PhysRevLett.114.226103
|
11 |
L. Yin, J. Qiao, W. Wang, Z.D. Chu, K. F. Zhang, R.F. Dou, C. L. Gao, J.F. Jia, J.C. Nie, and L. He, Tuning structures and electronic spectra of graphene layers with tilt grain boundaries, Phys. Rev. B 89(20), 205410 (2014)
https://doi.org/10.1103/PhysRevB.89.205410
|
12 |
Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralowfrequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)
https://doi.org/10.1007/s11467-018-0854-3
|
13 |
H. Butt, B. Cappella, and M. Kappl, Force measurements with atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep. 59(1–6), 1 (2005)
https://doi.org/10.1016/j.surfrep.2005.08.003
|
14 |
S. M. Hues, C. F. Draper, and R. J. Colton, Measurement of nanomechanical properties of metals using the atomic force microscope, J. Vac. Sci. Technol. B 12(3), 2211 (1994)
https://doi.org/10.1116/1.587743
|
15 |
N. Yang, K. K. H. Wong, J. R. De Bruyn, and J. L. Hutter, Frequency-dependent viscoelasticity measurement by atomic force microscopy, Meas. Sci. Technol. 20(2), 025703 (2009)
https://doi.org/10.1088/0957-0233/20/2/025703
|
16 |
R. M. Overney, E. Meyer, J. Frommer, H.J. Guentherodt, M. Fujihira, H. Takano, and Y. Gotoh, Force microscopy study of friction and elastic compliance of phase-separated organic thin films, Langmuir 10(4), 1281 (1994)
https://doi.org/10.1021/la00016a049
|
17 |
R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J. 86(3), 1777 (2004)
https://doi.org/10.1016/S0006-3495(04)74245-9
|
18 |
P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2(2), 103 (1991)
https://doi.org/10.1088/0957-4484/2/2/004
|
19 |
M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, Contact resonance atomic force microscopy imaging in air and water using photothermal excitation, Rev. Sci. Instrum. 86(8), 083706 (2015)
https://doi.org/10.1063/1.4928105
|
20 |
X. Zhou, J. Fu, and F. Li, Contact resonance force microscopy for nanomechanical characterization: Accuracy and sensitivity, J. Appl. Phys. 114(6), 064301 (2013)
https://doi.org/10.1063/1.4817659
|
21 |
G. Stan and S. D. Solares, Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies, Beilstein J. Nanotechnol. 5(1), 278 (2014)
https://doi.org/10.3762/bjnano.5.30
|
22 |
Q. Li, S. Jesse, A. Tselev, L. Collins, P. Yu, I. Kravchenko, S. V. Kalinin, and N. Balke, Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy, ACS Nano 9(2), 1848 (2015)
https://doi.org/10.1021/nn506753u
|
23 |
Y. Gao, S. Kim, S. Zhou, H. C. Chiu, D. Nélias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in two-dimensional materials, Nat. Mater. 14(7), 714 (2015)
https://doi.org/10.1038/nmat4322
|
24 |
U. Rabe, M. Kopycinska-Müller, and S. Hirsekorn, Atomic force acoustic microscopy, Nanosci. Technol. 15(4), 123 (2013)
https://doi.org/10.1007/978-3-642-27494-7_5
|
25 |
U. Rabe and W. Arnold, Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64(12), 1493 (1994)
https://doi.org/10.1063/1.111869
|
26 |
K. Yamanaka and S. Nakano, Ultrasonic atomic force microscope with overtone excitation of cantilever, Jpn. J. Appl. Phys. 35(Part 1, No. 6B), 3787 (1996)
https://doi.org/10.1143/JJAP.35.3787
|
27 |
K. Yamanaka, K. Kobari, and T. Tsuji, Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements, Jpn. J. Appl. Phys. 47(7), 6070 (2008)
https://doi.org/10.1143/JJAP.47.6070
|
28 |
D. G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D. C. Hurley, J. Grabowski, and A. H. Tsou, Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy, Macromolecules 45(10), 4363 (2012)
https://doi.org/10.1021/ma2028038
|
29 |
D. C. Hurley, Scanning Probe Microscopy in Industrial Applications, John Wiley & Sons, Inc., 2013
|
30 |
F. Marinello, D. Passeri, and E. Savio, Acoustic Scanning Probe Microscopy, Springer, Berlin, 2013
https://doi.org/10.1007/978-3-642-27494-7
|
31 |
D. C. Hurley, in: Applied Scanning Probe Methods Vol. XI, Springer Berlin Heidelberg, New York, 2009, pp 97–138
|
32 |
M. Kopycinska-Müller, R. H. Geiss, and D. C. Hurley, Contact mechanics and tip shape in AFM-based nanomechanical measurements, Ultramicroscopy 106(6), 466 (2006)
https://doi.org/10.1016/j.ultramic.2005.12.006
|
33 |
D. C. Hurley and J. A. Turner, Humidity effects on the determination of elastic properties by atomic force acoustic microscopy, J. Appl. Phys. 95(5), 2403 (2004)
https://doi.org/10.1063/1.1646436
|
34 |
N. Hai, X. Li, and H. Gao, Elastic modulus of amorphous SiO2 nanowires, Appl. Phys. Lett. 88(4), 043108 (2006)
https://doi.org/10.1063/1.2165275
|
35 |
M. Enachescu, R. J. A. van den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, and M. Salmeron, Atomic force microscopy study of an ideally hard contact: The diamond (111)/tungsten carbide interface, Phys. Rev. Lett. 81(9), 1877 (1998)
https://doi.org/10.1103/PhysRevLett.81.1877
|
36 |
T. Pei, L. Bao, R. Ma, S. Song, B. Ge, L. Wu, Z. Zhou, G. Wang, H. Yang, J. Li, C. Gu, C. Shen, S. Du, and H. J. Gao, Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: In-plane electrical anisotropy and gate-tunable thermopower, Adv. Electron. Mater. 2(11), 1600292 (2016)
https://doi.org/10.1002/aelm.201600292
|
37 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
38 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
39 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
40 |
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
|
41 |
K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101 (2010)
https://doi.org/10.1103/PhysRevB.82.081101
|
42 |
K. Jiri, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 1 (2010)
https://doi.org/10.1088/0953-8984/22/2/022201
|
43 |
J. Klimes, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
|
44 |
W. J. Baumgardner, J. J. Choi, Y. F. Lim, and T. Hanrath, SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry, J. Am. Chem. Soc. 132(28), 9519 (2010)
https://doi.org/10.1021/ja1013745
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|