Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 63505    https://doi.org/10.1007/s11467-020-0994-0
RESEARCH ARTICLE
Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy
Zhi-Yue Zheng1, Yu-Hao Pan2,7, Teng-Fei Pei3, Rui Xu2, Kun-Qi Xu4, Le Lei2, Sabir Hussain5,6, Xiao-Jun Liu1, Li-Hong Bao3, Hong-Jun Gao3, Wei Ji2(), Zhi-Hai Cheng2()
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
5. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
7. China North Vehicle Research Institute, Beijing, China
 Download: PDF(4955 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The interlayer bonding in two-dimensional (2D) materials is particularly important because it is not only related to their physical and chemical stability but also affects their mechanical, thermal, electronic, optical, and other properties. To address this issue, we report the direct characterization of the interlayer bonding in 2D SnSe using contact-resonance atomic force microscopy (CR-AFM) in this study. Site-specific CR spectroscopy and CR force spectroscopy measurements are performed on both SnSe and its supporting SiO2/Si substrate comparatively. Based on the cantilever and contact mechanic models, the contact stiffness and vertical Young’s modulus are evaluated in comparison with SiO2/Si as a reference material. The interlayer bonding of SnSe is further analyzed in combination with the semi-analytical model and density functional theory calculations. The direct characterization of interlayer interactions using this non-destructive methodology of CR-AFM would facilitate a better understanding of the physical and chemical properties of 2D layered materials, specifically for interlayer intercalation and vertical heterostructures.

Keywords 2D materials      interlayer bonding      contact-resonance atomic force microscopy      density functional theory     
Corresponding Author(s): Wei Ji,Zhi-Hai Cheng   
Just Accepted Date: 03 September 2020   Issue Date: 16 October 2020
 Cite this article:   
Zhi-Yue Zheng,Yu-Hao Pan,Teng-Fei Pei, et al. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0994-0
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/63505
1 Y. Zhang, Y. L. Wang, Y. D. Que, and H. J. Gao, Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy, Chin. Phys. B 24(7), 078104 (2015)
https://doi.org/10.1088/1674-1056/24/7/078104
2 J. Y. Park, S. Kwon, and J. H. Kim, Nanomechanical and charge transport properties of two-dimensional atomic sheets, Adv. Mater. Interfaces 1(3), 1300089 (2014)
https://doi.org/10.1002/admi.201300089
3 W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
4 R. Wang, X. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
https://doi.org/10.1007/s11467-018-0859-y
5 D. Pesin and A. H. Macdonald, Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater. 11(5), 409 (2012)
https://doi.org/10.1038/nmat3305
6 T. LaMountain, E. J. Lenferink, Y. Chen, T. K. Stanev, and N. P. Stern, Environmental engineering of transition metal dichalcogenide optoelectronics, Front. Phys. 13(4), 138114 (2018)
https://doi.org/10.1007/s11467-018-0795-x
7 S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
https://doi.org/10.1007/s11467-018-0879-7
8 N. C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P. R. C. Kent, B. Dyatkin, G. Rother, W. T. Heller, A. C. T. van Duin, Y. Gogotsi, and E. Mamontov, Effect of metal ion intercalation on the structure of mxene and water dynamics on its internal surfaces, ACS Appl. Mater. Interfaces 8(14), 8859 (2016)
https://doi.org/10.1021/acsami.6b01490
9 Z. Zheng, R. Xu, K. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, and Z. H. Cheng, Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy, Front. Phys. 15(2), 23601 (2020)
https://doi.org/10.1007/s11467-019-0933-0
10 K. Yamasue, H. Fukidome and K. Funakubo, Interfacial charge states in graphene on sic studied by noncontact scanning nonlinear dielectric potentiometry, Phys. Rev. lett. 114(22), 226103 (2015)
https://doi.org/10.1103/PhysRevLett.114.226103
11 L. Yin, J. Qiao, W. Wang, Z.D. Chu, K. F. Zhang, R.F. Dou, C. L. Gao, J.F. Jia, J.C. Nie, and L. He, Tuning structures and electronic spectra of graphene layers with tilt grain boundaries, Phys. Rev. B 89(20), 205410 (2014)
https://doi.org/10.1103/PhysRevB.89.205410
12 Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralowfrequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)
https://doi.org/10.1007/s11467-018-0854-3
13 H. Butt, B. Cappella, and M. Kappl, Force measurements with atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep. 59(1–6), 1 (2005)
https://doi.org/10.1016/j.surfrep.2005.08.003
14 S. M. Hues, C. F. Draper, and R. J. Colton, Measurement of nanomechanical properties of metals using the atomic force microscope, J. Vac. Sci. Technol. B 12(3), 2211 (1994)
https://doi.org/10.1116/1.587743
15 N. Yang, K. K. H. Wong, J. R. De Bruyn, and J. L. Hutter, Frequency-dependent viscoelasticity measurement by atomic force microscopy, Meas. Sci. Technol. 20(2), 025703 (2009)
https://doi.org/10.1088/0957-0233/20/2/025703
16 R. M. Overney, E. Meyer, J. Frommer, H.J. Guentherodt, M. Fujihira, H. Takano, and Y. Gotoh, Force microscopy study of friction and elastic compliance of phase-separated organic thin films, Langmuir 10(4), 1281 (1994)
https://doi.org/10.1021/la00016a049
17 R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J. 86(3), 1777 (2004)
https://doi.org/10.1016/S0006-3495(04)74245-9
18 P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2(2), 103 (1991)
https://doi.org/10.1088/0957-4484/2/2/004
19 M. Kocun, A. Labuda, A. Gannepalli, and R. Proksch, Contact resonance atomic force microscopy imaging in air and water using photothermal excitation, Rev. Sci. Instrum. 86(8), 083706 (2015)
https://doi.org/10.1063/1.4928105
20 X. Zhou, J. Fu, and F. Li, Contact resonance force microscopy for nanomechanical characterization: Accuracy and sensitivity, J. Appl. Phys. 114(6), 064301 (2013)
https://doi.org/10.1063/1.4817659
21 G. Stan and S. D. Solares, Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies, Beilstein J. Nanotechnol. 5(1), 278 (2014)
https://doi.org/10.3762/bjnano.5.30
22 Q. Li, S. Jesse, A. Tselev, L. Collins, P. Yu, I. Kravchenko, S. V. Kalinin, and N. Balke, Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy, ACS Nano 9(2), 1848 (2015)
https://doi.org/10.1021/nn506753u
23 Y. Gao, S. Kim, S. Zhou, H. C. Chiu, D. Nélias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in two-dimensional materials, Nat. Mater. 14(7), 714 (2015)
https://doi.org/10.1038/nmat4322
24 U. Rabe, M. Kopycinska-Müller, and S. Hirsekorn, Atomic force acoustic microscopy, Nanosci. Technol. 15(4), 123 (2013)
https://doi.org/10.1007/978-3-642-27494-7_5
25 U. Rabe and W. Arnold, Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64(12), 1493 (1994)
https://doi.org/10.1063/1.111869
26 K. Yamanaka and S. Nakano, Ultrasonic atomic force microscope with overtone excitation of cantilever, Jpn. J. Appl. Phys. 35(Part 1, No. 6B), 3787 (1996)
https://doi.org/10.1143/JJAP.35.3787
27 K. Yamanaka, K. Kobari, and T. Tsuji, Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements, Jpn. J. Appl. Phys. 47(7), 6070 (2008)
https://doi.org/10.1143/JJAP.47.6070
28 D. G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D. C. Hurley, J. Grabowski, and A. H. Tsou, Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy, Macromolecules 45(10), 4363 (2012)
https://doi.org/10.1021/ma2028038
29 D. C. Hurley, Scanning Probe Microscopy in Industrial Applications, John Wiley & Sons, Inc., 2013
30 F. Marinello, D. Passeri, and E. Savio, Acoustic Scanning Probe Microscopy, Springer, Berlin, 2013
https://doi.org/10.1007/978-3-642-27494-7
31 D. C. Hurley, in: Applied Scanning Probe Methods Vol. XI, Springer Berlin Heidelberg, New York, 2009, pp 97–138
32 M. Kopycinska-Müller, R. H. Geiss, and D. C. Hurley, Contact mechanics and tip shape in AFM-based nanomechanical measurements, Ultramicroscopy 106(6), 466 (2006)
https://doi.org/10.1016/j.ultramic.2005.12.006
33 D. C. Hurley and J. A. Turner, Humidity effects on the determination of elastic properties by atomic force acoustic microscopy, J. Appl. Phys. 95(5), 2403 (2004)
https://doi.org/10.1063/1.1646436
34 N. Hai, X. Li, and H. Gao, Elastic modulus of amorphous SiO2 nanowires, Appl. Phys. Lett. 88(4), 043108 (2006)
https://doi.org/10.1063/1.2165275
35 M. Enachescu, R. J. A. van den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, and M. Salmeron, Atomic force microscopy study of an ideally hard contact: The diamond (111)/tungsten carbide interface, Phys. Rev. Lett. 81(9), 1877 (1998)
https://doi.org/10.1103/PhysRevLett.81.1877
36 T. Pei, L. Bao, R. Ma, S. Song, B. Ge, L. Wu, Z. Zhou, G. Wang, H. Yang, J. Li, C. Gu, C. Shen, S. Du, and H. J. Gao, Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: In-plane electrical anisotropy and gate-tunable thermopower, Adv. Electron. Mater. 2(11), 1600292 (2016)
https://doi.org/10.1002/aelm.201600292
37 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
38 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
39 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
40 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
41 K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101 (2010)
https://doi.org/10.1103/PhysRevB.82.081101
42 K. Jiri, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 1 (2010)
https://doi.org/10.1088/0953-8984/22/2/022201
43 J. Klimes, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
44 W. J. Baumgardner, J. J. Choi, Y. F. Lim, and T. Hanrath, SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry, J. Am. Chem. Soc. 132(28), 9519 (2010)
https://doi.org/10.1021/ja1013745
[1] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[2] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[3] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[4] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[5] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[6] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[7] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[8] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[9] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[10] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[11] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[12] Mosayeb Naseri, Shiru Lin, Jaafar Jalilian, Jinxing Gu, Zhongfang Chen. Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction[J]. Front. Phys. , 2018, 13(3): 138102-.
[13] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[14] Shiru Lin, Yanchao Wang, Zhongfang Chen. Two-dimensional aluminum monoxide nanosheets: A computational study[J]. Front. Phys. , 2018, 13(3): 138109-.
[15] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed