|
|
Recent progress on borophene: Growth and structures |
Longjuan Kong1,2, Kehui Wu1,2,3, Lan Chen1,2( ) |
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China 3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.
|
Keywords
borophene
molecular beam epitaxy
scanning tunneling microscopy
atomic model
density functional theory
|
Corresponding Author(s):
Lan Chen
|
Issue Date: 23 April 2018
|
|
1 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
2 |
D. Akinwande, L. Tao, Q. Yu, X. Lou, P. Peng, and D. Kuzum, Large-area graphene electrodes: Using CVD to facilitate applications in commercial touchscreens, flex- ible nanoelectronics, and neural interfaces, IEEE Nanotechnol. Mag. 9(3), 6 (2015)
https://doi.org/10.1109/MNANO.2015.2441105
|
3 |
A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)
https://doi.org/10.1039/C4NR01600A
|
4 |
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)
https://doi.org/10.1038/nnano.2014.207
|
5 |
A. L. Ivanovskii, Graphene-based and graphene-like materials, Russ. Chem. Rev. 81(7), 571 (2012)
https://doi.org/10.1070/RC2012v081n07ABEH004302
|
6 |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
|
7 |
J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
https://doi.org/10.1016/j.pmatsci.2016.04.001
|
8 |
B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)
https://doi.org/10.1021/nl301047g
|
9 |
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphene-like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
https://doi.org/10.1103/PhysRevLett.108.155501
|
10 |
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
https://doi.org/10.1103/PhysRevLett.108.245501
|
11 |
J. Gou, Q. Zhong, S. Sheng, W. Li, P. Cheng, H. Li, L. Chen, and, K. Wu, Strained monolayer germanene with 1×1 lattice on Sb(111), 2D Materials 3, 045005 (2016)
|
12 |
L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
|
13 |
S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
|
14 |
J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)
https://doi.org/10.1103/PhysRevMaterials.1.054004
|
15 |
F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-H. Liu, D. Qian, S.-C. Zhang, and J.-F. Jia, Epitaxial growth of two-dimensional stanene, Nature Mater. 14, 1020 (2015)
https://doi.org/10.1038/nmat4384
|
16 |
Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
|
17 |
C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84(19), 195430 (2011)
https://doi.org/10.1103/PhysRevB.84.195430
|
18 |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
|
19 |
K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)
https://doi.org/10.1103/PhysRevB.50.14916
|
20 |
K. H. Wu, A review of the growth and structures of silicene on Ag(111), Chin. Phys. B 24(8), 086802 (2015)
https://doi.org/10.1088/1674-1056/24/8/086802
|
21 |
H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity, Nat. Mater. 2(12), 827 (2003)
https://doi.org/10.1038/nmat1012
|
22 |
A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality, Acc. Chem. Res. 47(4), 1349 (2014)
https://doi.org/10.1021/ar400310g
|
23 |
W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang, The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene, J. Am. Chem. Soc. 136(35), 12257 (2014)
https://doi.org/10.1021/ja507235s
|
24 |
Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nat. Commun. 5, 3113 (2014)
https://doi.org/10.1038/ncomms4113
|
25 |
W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, A concentric planar doubly-aromatic B19 cluster, Nat. Chem. 2(3), 202 (2010)
https://doi.org/10.1038/nchem.534
|
26 |
H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang, Observation of an all-boron fullerene, Nat. Chem. 6(8), 727 (2014)
https://doi.org/10.1038/nchem.1999
|
27 |
J. Lv, Y. Wang, L. Zhu, and Y. Ma, B38: An all-boron fullerene analogue, Nanoscale 6(20), 11692 (2014)
https://doi.org/10.1039/C4NR01846J
|
28 |
H. Li, N. Shao, B. Shang, L. F. Yuan, J. Yang, and X. C. Zeng, Icosahedral B12-containing core–shell structures of B80, Chem. Commun. 46(22), 3878 (2010)
https://doi.org/10.1039/c002954h
|
29 |
N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure,Phys. Rev. Lett. 98(16), 166804 (2007)
https://doi.org/10.1103/PhysRevLett.98.166804
|
30 |
J. Zhao, L. Wang, F. Li, and Z. Chen, B80 and other medium-sized boron clusters: Core-shell structures, not hollow cages, J. Phys. Chem. A 114(37), 9969 (2010)
https://doi.org/10.1021/jp1018873
|
31 |
D. Ciuparu, R. F. Klie, Y. Zhu, and L. Pfefferle, Synthesis of pure boron single-wall nanotubes, J. Phys. Chem. B 108(13), 3967 (2004)
https://doi.org/10.1021/jp049301b
|
32 |
J. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, and H. J. Gao, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications, Nanoscale 2(8), 1375 (2010)
https://doi.org/10.1039/c0nr00051e
|
33 |
A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Probing properties of boron α-tubes by ab initiocalculations, Nano Lett. 8(5), 1314 (2008)
https://doi.org/10.1021/nl073295o
|
34 |
T. Ogitsu, E. Schwegler, and G. Galli, β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration, Chem. Rev. 113(5), 3425 (2013)
https://doi.org/10.1021/cr300356t
|
35 |
J. K. Olson and A. I. Boldyrev, Electronic transmutation: Boron acquiring an extra electron becomes ‘carbon’, Chem. Phys. Lett. 523, 83 (2012)
https://doi.org/10.1016/j.cplett.2011.11.079
|
36 |
S. Saxena, Introduction to Boron Nanostructures, Handbook of Boron Nanostructures, 1 (2016)
|
37 |
I. Boustani, Systematic ab initio investigation of bare boron clusters: mDetermination of the geometryand electronic structures of Bn(n= 2–14), Phys. Rev. B 55(24), 16426 (1997)
https://doi.org/10.1103/PhysRevB.55.16426
|
38 |
I. Boustani, New quasi-planar surfaces of bare boron, Surf. Sci. 370(2–3), 355 (1997)
|
39 |
K. C. Lau and R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets, J. Phys. Chem. C 111(7), 2906 (2007)
https://doi.org/10.1021/jp066719w
|
40 |
K. C. Lau, R. Pati, R. Pandey, and A. C. Pineda, Firstprinciples study of the stability and electronic properties of sheets and nanotubes of elemental boron, Chem. Phys. Lett. 418(4–6), 549 (2006)
https://doi.org/10.1016/j.cplett.2005.10.104
|
41 |
I. Cabria, M. López, and J. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)
https://doi.org/10.1088/0957-4484/17/3/027
|
42 |
H. Tang and S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures, Phys. Rev. B 80(13), 134113 (2009)
https://doi.org/10.1103/PhysRevB.80.134113
|
43 |
H. Tang and S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and threecenter bonding in boron sheets, Phys. Rev. Lett. 99(11), 115501 (2007)
https://doi.org/10.1103/PhysRevLett.99.115501
|
44 |
H. Tang and S. Ismail-Beigi, First-principles study of boron sheets and nanotubes, Phys. Rev. B 82(11), 115412 (2010)
https://doi.org/10.1103/PhysRevB.82.115412
|
45 |
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)
https://doi.org/10.1021/nn302696v
|
46 |
E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)
https://doi.org/10.1021/nl3004754
|
47 |
Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)
https://doi.org/10.1002/anie.201207972
|
48 |
H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)
https://doi.org/10.1038/srep03238
|
49 |
L. Zhang, Q. Yan, S. Du, G. Su, and H. J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties, J. Phys. Chem. C 116(34), 18202 (2012)
https://doi.org/10.1021/jp303616d
|
50 |
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
https://doi.org/10.1038/nchem.2491
|
51 |
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
https://doi.org/10.1126/science.aad1080
|
52 |
Q. Zhong, J. Zhang, P. Cheng, B. Feng, W. Li, S. Sheng, H. Li, S. Meng, L. Chen, and K. Wu, Metastable phases of 2D boron sheets on Ag(111), J. Phys. Condens. Matter 29(9), 095002 (2017)
https://doi.org/10.1088/1361-648X/aa5165
|
53 |
Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)
https://doi.org/10.1021/acs.nanolett.6b03349
|
54 |
Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng, S. Yang, P. Cheng, H. Li, K. Wu, and L. Chen, Synthesis of borophene nanoribbons on Ag(110) surface, arXiv: 1704.05603 (2017)
|
55 |
Z. Zhang, Y. Yang, G. Gao, and B. I. Yakobson, Two- Dimensional Boron Monolayers Mediated by Metal Substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)
https://doi.org/10.1002/anie.201505425
|
56 |
A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nature Rev. Chem. 1, 0014 (2017)
|
57 |
Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
https://doi.org/10.1039/C7CS00261K
|
58 |
B. Feng, O. Sugino, R. Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T. C. Chiang, S. Meng, and I. Matsuda, Dirac fermions in borophene, Phys. Rev. Lett. 118(9), 096401 (2017)
https://doi.org/10.1103/PhysRevLett.118.096401
|
59 |
B. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugino, and K. Miyamoto, Discovery of 2D anisotropic Dirac cones, Adv. Mater. 30(2),1704025 (2018)
https://doi.org/10.1002/adma.201704025
|
60 |
B. Feng, J. Zhang, R. Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)
https://doi.org/10.1103/PhysRevB.94.041408
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|