|
|
Two-dimensional aluminum monoxide nanosheets: A computational study |
Shiru Lin1, Yanchao Wang2, Zhongfang Chen1( ) |
1. Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA 2. State Key Lab of Superhard Materials, Jilin University, Changchun 130012, China |
|
|
Abstract By means of density functional theory (DFT) computations and particle-swarm optimization (PSO) structure searches, we herein predict five low-lying energy structures of two-dimensional (2D) aluminum monoxide (AlO) nanosheets. Their high cohesive energy, absence of imaginary phonon dispersion, and good thermal stability make them feasible targets for experimental realization. These monolayers exhibit diverse structural topologies, for instance, PmA- and Pmm-AlO possess buckled four- and sixmembered AlO rings, whereas P62-, PmB-, and P6m-AlO have pores of varied sizes. Interestingly, the most energetically preferred monolayers, PmA- and Pmm-AlO, feature wide band gaps (2.45 and 5.13 eV, respectively), which are promising for green and blue light-emitting devices (LEDs) and photodetectors.
|
Keywords
2D materials
density functional calculations
particle swarm optimization
wide-band-gap semiconductor
|
Corresponding Author(s):
Zhongfang Chen
|
Issue Date: 09 May 2018
|
|
1 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
2 |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
|
3 |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
|
4 |
K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
|
5 |
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
https://doi.org/10.1103/PhysRevLett.100.016602
|
6 |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
|
7 |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
|
8 |
Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
|
9 |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
|
10 |
S. Lin, J. Gu, Y. Wang, Y. Wang, S. Zhang, X. Liu, H. Zeng, and Z. Chen, Porous silaphosphorene, silaarsenene and silaantimonene: A sweet marriage of Si and P/As/Sb, J. Mater. Chem. A 6(8), 3738 (2018)
https://doi.org/10.1039/C7TA10466A
|
11 |
G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)
https://doi.org/10.1021/acsami.5b02441
|
12 |
L. Kou, C. Chen, and S. C. Smith, Phosphorene: Fabrication, properties, and applications, J. Phys. Chem. Lett. 6(14), 2794 (2015)
https://doi.org/10.1021/acs.jpclett.5b01094
|
13 |
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
|
14 |
Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)
https://doi.org/10.1002/wcms.1224
|
15 |
J. J. Zhao, H. S. Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
https://doi.org/10.1016/j.pmatsci.2016.04.001
|
16 |
G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)
https://doi.org/10.1103/PhysRevB.76.075131
|
17 |
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)
https://doi.org/10.1103/PhysRevLett.109.056804
|
18 |
P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102(16), 163106 (2013)
https://doi.org/10.1063/1.4802782
|
19 |
E. Durgun, S. Tongay, and S. Ciraci, Silicon and III-V compound nanotubes: Structural and electronic properties, Phys. Rev. B 72(7), 075420 (2005)
https://doi.org/10.1103/PhysRevB.72.075420
|
20 |
U. Röthlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett. 72(5), 665 (1994)
https://doi.org/10.1103/PhysRevLett.72.665
|
21 |
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
https://doi.org/10.1103/PhysRevLett.108.155501
|
22 |
S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
|
23 |
K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)
https://doi.org/10.1103/PhysRevB.50.14916
|
24 |
Y. Jing, Z. Zhou, C. R. Cabrera, and Z. F. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)
https://doi.org/10.1039/C4TA01033G
|
25 |
M. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16(9), 095002 (2014)
https://doi.org/10.1088/1367-2630/16/9/095002
|
26 |
M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)
https://doi.org/10.1063/1.3595682
|
27 |
L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
|
28 |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
|
29 |
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
|
30 |
P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
https://doi.org/10.1103/PhysRevB.90.121408
|
31 |
S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)
https://doi.org/10.1103/PhysRevB.89.195303
|
32 |
N. Gao, H. S. Liu, S. Zhou, Y. Z. Bai, and J. J. Zhao, Interaction between post-graphene group-iv honeycomb monolayers and metal substrates: Implication for synthesis and structure control, J. Phys. Chem. C 121(9), 5123 (2017)
https://doi.org/10.1021/acs.jpcc.7b00023
|
33 |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
|
34 |
H. O. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)
https://doi.org/10.1038/nnano.2014.85
|
35 |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
|
36 |
A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, Phosphorene: From theory to applications, Nat. Rev. Mater. 1(11), 16061 (2016)
https://doi.org/10.1038/natrevmats.2016.61
|
37 |
Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev. Comput. Mol. Sci. 6(1), 5 (2016)
https://doi.org/10.1002/wcms.1234
|
38 |
R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)
https://doi.org/10.1021/nl500935z
|
39 |
L. Wang, A. Kutana, X. Zou, and B. I. Yakobson, Electro-mechanical anisotropy of phosphorene, Nanoscale 7(21), 9746 (2015)
https://doi.org/10.1039/C5NR00355E
|
40 |
H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)
https://doi.org/10.1021/acs.chemmater.5b04949
|
41 |
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
https://doi.org/10.1002/anie.201411246
|
42 |
S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez- Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47(3), 982 (2018)
https://doi.org/10.1039/C7CS00125H
|
43 |
S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
https://doi.org/10.1002/anie.201507568
|
44 |
H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission,Chem. Commun. 52(54), 8409 (2016)
https://doi.org/10.1039/C6CC02778D
|
45 |
P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)
https://doi.org/10.1002/adma.201602128
|
46 |
C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)
https://doi.org/10.1002/anie.201605298
|
47 |
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016)
https://doi.org/10.1038/ncomms13352
|
48 |
J. H. Yuan, N. N. Yu, K. H. Xue, and X. S. Miao, Stability, electronic and thermodynamic properties of aluminene from first-principles calculations, Appl. Surf. Sci. 409, 85 (2017)
https://doi.org/10.1016/j.apsusc.2017.02.238
|
49 |
C. Kamal, A. Chakrabarti, and M. Ezawa, Aluminene as highly hole-doped graphene, New J. Phys. 17(8), 083014 (2015)
https://doi.org/10.1088/1367-2630/17/8/083014
|
50 |
D. C. Tyte, B2[π]-A2[σ] band system of aluminium monoxide, Nature 202(4930), 383 (1964)
https://doi.org/10.1038/202383a0
|
51 |
M. Hoch and H. L. Johnston, Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO1, J. Am. Chem. Soc. 76(9), 2560 (1954)
https://doi.org/10.1021/ja01638a076
|
52 |
J. Koput and K. A. Peterson, ab initio prediction of the potential energy surface and vibrational–rotational energy levels of X2A′ BeOH, J. Phys. Chem. A 107(19), 3981 (2003)
https://doi.org/10.1021/jp034292c
|
53 |
C. Dohmeier, D. Loos, and H. Schnockel, Aluminum(I) and gallium(I) compounds: Syntheses, structures, and reactions, Angew. Chem. Int. Ed. Engl. 35(2), 129 (1996)
https://doi.org/10.1002/anie.199601291
|
54 |
C. Liang, Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc. 120(10), 1289 (1973)
https://doi.org/10.1149/1.2403248
|
55 |
S. Zhang, J. Yu, H. Li, D. Mao, and G. Lu, Higheffective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism, Sci. Rep. 6(1), 33196 (2016)
https://doi.org/10.1038/srep33196
|
56 |
T. T. Song, M. Yang, J. W. Chai, M. Callsen, J. Zhou, T. Yang, Z. Zhang, J. S. Pan, D. Z. Chi, Y. P. Feng, and S. J. Wang, The stability of aluminium oxide monolayer and its interface with two-dimensional materials, Sci. Rep. 6(1), 29221 (2016)
https://doi.org/10.1038/srep29221
|
57 |
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
|
58 |
M. Kuisma, J. Ojanen, J. Enkovaara, and T. Rantala, Kohn-Sham potential with discontinuity for band gap materials, Phys. Rev. B 82(11), 115106 (2010)
https://doi.org/10.1103/PhysRevB.82.115106
|
59 |
I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Computational screening of perovskite metal oxides for optimal solar light capture, Energy Environ. Sci. 5(2), 5814 (2012)
https://doi.org/10.1039/C1EE02717D
|
60 |
P. Miró, M. Ghorbani-Asl, and T. Heine, Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides, Angew. Chem. Int. Ed. 53(11), 3015 (2014)
https://doi.org/10.1002/anie.201309280
|
61 |
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)
https://doi.org/10.1038/nmat4465
|
62 |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
|
63 |
K. Takahashi, A. Yoshikawa and A. Sandhu, Wide bandgap Semiconductors, Berlin Heidelberg: Springer- Verlag, 239 (2007)
https://doi.org/10.1007/978-3-540-47235-3
|
64 |
M. N. Yoder, Wide bandgap semiconductor materials and devices, IEEE Trans. Electron Dev. 43(10), 1633 (1996)
https://doi.org/10.1109/16.536807
|
65 |
A. Lafond, C. Guillot-Deudon, J. Vidal, M. Paris, C. La, and S. Jobic, Substitution of Li for Cu in Cu2ZnSnS4: Toward wide band gap absorbers with low cation disorder for thin film solar cells, Inorg. Chem. 56(5), 2712 (2017)
https://doi.org/10.1021/acs.inorgchem.6b02865
|
66 |
T. P. Chow and R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Dev. 41(8), 1481 (1994)
https://doi.org/10.1109/16.297751
|
67 |
J. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for hightemperature applications, Solid State Electron, 39(10), 1409 (1996)
https://doi.org/10.1016/0038-1101(96)00045-7
|
68 |
P. G. Neudeck, R. S. Okojie, and L. Y. Chen, Hightemperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065 (2002)
https://doi.org/10.1109/JPROC.2002.1021571
|
69 |
M. Topsakal, E. Aktürk, and S. Ciraci, First-principles study of two-and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B 79(11), 115442 (2009)
https://doi.org/10.1103/PhysRevB.79.115442
|
70 |
K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)
https://doi.org/10.1038/nmat1134
|
71 |
Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science 317(5840), 932 (2007)
https://doi.org/10.1126/science.1144216
|
72 |
E. Monroy, F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18(4), R33 (2003)
https://doi.org/10.1088/0268-1242/18/4/201
|
73 |
H. Y. Lu, A. S. Cuamba, L. Geng, L. Hao, Y. M. Qi, and C. Ting, C3H2: A wide-band-gap semiconductor with strong optical absorption, Phys. Rev. B 96(16), 165420 (2017)
https://doi.org/10.1103/PhysRevB.96.165420
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|