Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13301    https://doi.org/10.1007/s11467-020-0986-0
REVIEW ARTICLE
Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications
Shuang Zhou1, Lu You2(), Hailin Zhou2, Yong Pu1, Zhigang Gui3, Junling Wang3()
1. New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2. Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
3. Department of Physics, Southern University of Science & Technology, Shenzhen 518055, China
 Download: PDF(6260 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Copper indium thiophosphate, CuInP2S6, has attracted much attention in recent years due to its van der Waals layered structure and robust ferroelectricity at room temperature. In this review, we aim to give an overview of the various properties of CuInP2S6, covering structural, ferroelectric, dielectric, piezoelectric and transport properties, as well as its potential applications. We also highlight the remaining questions and possible research directions related to this fascinating material and other compounds of the same family.

Keywords CuInP2S6      van der Waals ferroelectric      phase transition      ionic conduction      piezoelectricity     
Corresponding Author(s): Lu You,Junling Wang   
Just Accepted Date: 18 August 2020   Issue Date: 10 October 2020
 Cite this article:   
Shuang Zhou,Lu You,Hailin Zhou, et al. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0986-0
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13301
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 C. Gong and X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363(6428), eaav4450 (2019)
https://doi.org/10.1126/science.aav4450
3 K. S. Burch, D. Mandrus, and J. G. Park, Magnetism in two-dimensional van der Waals materials, Nature 563(7729), 47 (2018)
https://doi.org/10.1038/s41586-018-0631-z
4 L. Mennel, M. M. Furchi, S. Wachter, M. Paur, D. K. Polyushkin, and T. Mueller, Optical imaging of strain in two-dimensional crystals, Nat. Commun. 9(1), 516 (2018)
https://doi.org/10.1038/s41467-018-02830-y
5 Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
https://doi.org/10.1038/natrevmats.2016.42
6 F. Zhang, Z. Wang, J. Dong, A. Nie, J. Xiang, W. Zhu, Z. Liu, and C. Tao, Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3, ACS Nano 13(7), 8004 (2019)
https://doi.org/10.1021/acsnano.9b02764
7 T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206 (2017)
https://doi.org/10.1007/s11467-017-0648-z
8 J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exception alballistic transport in epitaxial graphene nanoribbons, Nature 506(349), 7488 (2014)
https://doi.org/10.1038/nature12952
9 S. J. Liang, B. Cheng, X. Cui, and F. Miao, Van der Waals heterostructures for high-performance device applications: Challenges and opportunities, Adv. Mater. 6(1), 1903800 (2019)
https://doi.org/10.1002/adma.201903800
10 X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao, F. Liu, L. You, Q. Zeng, Y. Deng, C. Zhu, J. Zhou, Q. Fu, J. Wang, Y. Huang, and Z. Liu, Van der Waals negative capacitance transistors, Nat. Commun. 10(1), 3037 (2019)
https://doi.org/10.1038/s41467-019-10738-4
11 Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes, Nano Lett. 17(9), 5508 (2017)
https://doi.org/10.1021/acs.nanolett.7b02198
12 K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, and S. H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353(6296), 274 (2016)
https://doi.org/10.1126/science.aad8609
13 F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016)
https://doi.org/10.1038/ncomms12357
14 S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10, 1775 (2019)
https://doi.org/10.1038/s41467-019-09669-x
15 Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong, J. Chu, and C. Duan, Recent progress in two-dimensional ferroelectric materials, Adv. Electron. Mater. 6(1), 1900818 (2020)
https://doi.org/10.1002/aelm.201900818
16 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
17 Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Wang, Z. Sun, Y. Yi, Y. Wu, S. Wu, J. Zhu, J. Wang, X. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
18 C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
19 M. Wu and X. C. Zeng, Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues, Nano Lett. 16(5), 3236 (2016)
https://doi.org/10.1021/acs.nanolett.6b00726
20 W. Y. Tong, S. J. Gong, X. Wan, and C. G. Duan, Concepts of ferrovalley material and anomalous valley hall effect, Nat. Commun. 7(1), 13612 (2016)
https://doi.org/10.1038/ncomms13612
21 X. W. Shen, H. Hu, and C. G. Duan, Chapter 3: Twodimensional ferrovalley materials, Spintronic 2D Materials, Eds. W. Q. Liu and Y. B. Xu, 2020, p. 65
https://doi.org/10.1016/B978-0-08-102154-5.00003-5
22 J. F. Scott, Ferroelectric Memories, Springer Science & Business Media, 2000
https://doi.org/10.1007/978-3-662-04307-3
23 J. Deng, Y. Liu, M. Li, S. Xu, Y. Lun, P. Lv, T. Xia, P. Gao, X. Wang, and J. Hong, Thickness-dependent inplane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6, Small 16(1), 1904529 (2020)
https://doi.org/10.1002/smll.201904529
24 Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
https://doi.org/10.1038/natrevmats.2016.42
25 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
26 M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh, and P. Maksymovych, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater. 29(38), 1602852 (2017)
https://doi.org/10.1002/adma.201602852
27 X. Wang, Z. Song, W. Wen, H. Liu, J. Wu, C. Dang, M. Hossain, M. A. Iqbal, and L. Xie, Potential 2D materials with phase transitions: Structure, synthesis, and device applications, Adv. Mater. 31(45), 1804682 (2019)
https://doi.org/10.1002/adma.201804682
28 R. Brec, Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3, Solid State Ion. 22(1), 3 (1986)
https://doi.org/10.1016/0167-2738(86)90055-X
29 A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, and S. V. Kalinin, CuInP2S6 room temperature layered ferroelectric, Nano Lett. 15(6), 3808 (2015)
https://doi.org/10.1021/acs.nanolett.5b00491
30 M. Si, P. Y. Liao, G. Qiu, Y. Duan, and P. D. Ye, Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure, ACS Nano 12(7), 6700 (2018)
https://doi.org/10.1021/acsnano.8b01810
31 J. A. Brehm, S. M. Neumayer, L. Tao, A. O’Hara, M. Chyasnavichus, M. A. Susner, M. A. McGuire, S. V. Kalinin, S. Jesse, P. Ganesh, S. T. Pantelides, P. Maksymovych, and N. Balke, Tunable quadruple-well ferroelectric van der Waals crystals, Nat. Mater. 19(1), 43 (2020)
https://doi.org/10.1038/s41563-019-0532-z
32 N. Balke, S. M. Neumayer, J. A. Brehm, M. A. Susner, B. J. Rodriguez, S. Jesse, S. V. Kalinin, S. T. Pantelides, M. A. McGuire, and P. Maksymovych, Locally controlled Cu-ion transport in layered ferroelectric CuInP2S6, ACS Appl. Mater. Interfaces 10(32), 27188 (2018)
https://doi.org/10.1021/acsami.8b08079
33 M. A. Susner, M. Chyasnavichyus, A. A. Puretzky, Q. He, B. S. Conner, Y. Ren, D. A. Cullen, P. Ganesh, D. Shin, H. Demir, J. W. McMurray, A. Y. Borisevich, P. Maksymovych, and M. A. McGuire, Cation-eutectic transition via sublattice melting in CuInP2S6/In4/3P2S6 van der Waals layered crystals, ACS Nano 11(7), 7060 (2017)
https://doi.org/10.1021/acsnano.7b02695
34 L. Chen, Y. Li, C. Li, H. Wang, Z. Han, H. Ma, G. Yuan, L. Lin, Z. Yan, X. Jiang, and J. M. Liu, Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes, AIP Adv. 9(11), 115211 (2019)
https://doi.org/10.1063/1.5123366
35 L. Niu, F. Liu, Q. Zeng, X. Zhu, Y. Wang, P. Yu, J. Shi, J. Line, J. Zhou, Q. Fu, W. Zhou, T. Yu, X. Liu, and Z. Liu, Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes, Nano Energy 58, 596 (2019)
https://doi.org/10.1016/j.nanoen.2019.01.085
36 M. Si, A. K. Saha, P. Y. Liao, S. Gao, S. M. Neumayer, J. Jian, J. Qin, N. B. Wisinger, H. Wang, P. Maksymovych, W. Wu, S. K. Gupta, and P. D. Ye, Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration, ACS Nano 13(8), 8760 (2019)
https://doi.org/10.1021/acsnano.9b01491
37 S. M. Neumayer, E. A. Eliseev, M. A. Susner, A. Tselev, B. J. Rodriguez, J. A. Brehm, S. T. Pantelides, G. Panchapakesan, S. Jesse, S. V. Kalinin, M. A. McGuire, A. N. Morozovska, P. Maksymovych, and N. Balke, Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric, Phys. Rev. Mater. 3(2), 024401 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.024401
38 M. A. Susner, A. Belianinov, A. Borisevich, Q. He, M. Chyasnavichyus, H. Demir, D. S. Sholl, P. Ganesh, D. L. Abernathy, M. A. McGuire, and P. Maksymovych, High-T C layered ferrielectric crystals by coherent spinodal decomposition, ACS Nano 9(12), 12365 (2015)
https://doi.org/10.1021/acsnano.5b05682
39 Z. Sun, W. Xun, L. Jiang, J. L. Zhong, and Y. Z. Wu, Strain engineering to facilitate the occurrence of 2D ferroelectricity in CuInP2S6 monolayer, J. Phys. D Appl. Phys. 52(46), 465302 (2019)
https://doi.org/10.1088/1361-6463/ab3aa7
40 L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S. A. Morris, F. Liu, L. Chang, D. Ichinose, H. Funakubo, W. Hu, T. Wu, Z. Liu, S. Dong, and J. Wang, Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric, Sci. Adv. 5(4), eaav3780 (2019)
https://doi.org/10.1126/sciadv.aav3780
41 S. Zhou, L. You, A. Chaturvedi, S. A. Morris, J. S. Herrin, N. Zhang, A. Abdelsamie, Y. Hu, J. Chen, Y. Zhou, S. Dong, and J. Wang, Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor, Mater. Horiz. 7(1), 263 (2020)
https://doi.org/10.1039/C9MH01215J
42 V. Maisonneuve, M. Evain, C. Payen, V. B. Cajipe, and P. Molinie, Room-temperature crystal structure of the layered phase CuIInIIIP2S6, J. Alloys Compd. 218(2), 157 (1995)
https://doi.org/10.1016/0925-8388(94)01416-7
43 S. Lee, P. Colombet, G. Ouvrard, and R. Brec, General trends observed in the substituted thiophosphate family. Synthesis and structure of silver scandium thiophosphate, AgScP2S6, and cadmium iron thiophosphate, CdFeP2S6, Inorg. Chem. 27(7), 1291 (1988)
https://doi.org/10.1021/ic00280a041
44 J. K. Burdett and O. Eisenstein, From three-to fourcoordination in copper (I) and silver (I), Inorg. Chem. 31(10), 1758 (1992)
https://doi.org/10.1021/ic00036a007
45 S. H. Wei, S. B. Zhang, and A. Zunger, Off-center atomic displacements in zinc-blende semiconductor, Phys. Rev. Lett. 70(11), 1639 (1993)
https://doi.org/10.1103/PhysRevLett.70.1639
46 V. Maisonneuve, V. B. Cajipe, A. Simon, R. Von Der Muhll, and J. Ravez, Ferrielectric ordering in lamellar CuInP2S6, Phys. Rev. B 56(17), 10860 (1997)
https://doi.org/10.1103/PhysRevB.56.10860
47 A. Simon, J. Ravez, V. Maisonneuve, C. Payen, and V. B. Cajipe, Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6, Chem. Mater. 6(9), 1575 (1994)
https://doi.org/10.1021/cm00045a016
48 A. Dziaugys, V. V. Shvartsman, J. Macutkevic, J. Banys, Y. Vysochanskii, and W. Kleemann, Phase diagram of mixed Cu(InxCr1−x)P2S6 crystals, Phys. Rev. B 85(13), 134105 (2012)
https://doi.org/10.1103/PhysRevB.85.134105
49 Q. He, A. Belianinov, A. Dziaugys, P. Maksymovych, Y. Vysochanskii, S. V. Kalinin, and A. Y. Borisevich, Antisite defects in layered multiferroic CuCr0.9In0.1P2S6, Nanoscale 7(44), 18579 (2015)
https://doi.org/10.1039/C5NR04779J
50 A. Dziaugys, J. Banys, J. Macutkevic, and Y. Vysochanskii, Anisotropy effects in thick layered CuInP2S6 and CuInP2Se6 crystals, Phase Transit. 86(9), 878 (2013)
https://doi.org/10.1080/01411594.2012.745533
51 Y. Vysochanskii, R. Yevych, L. Beley, V. Stephanovich, V. Mytrovcij, O. Mykajlo, A. Molnar, and M. Gurzan, Phonon spectra and phase transitions in CuInP2(SexS1−x)6 ferroelectrics, Ferroelectrics 284(1), 161 (2003)
https://doi.org/10.1080/00150190390204808
52 A. Dziaugys, J. Banys, J. Macutkevic, R. Sobiestianskas, and Y. Vysochanskii, Dipolar glass phase in ferrielectrics: CuInP2S6 and Ag0.1Cu0.9InP2S6 crystals, Phys. Status Solid. A 207(8), 1960 (2010)
https://doi.org/10.1002/pssa.200925346
53 G. Burr, E. Durand, M. Evain, and R. Brec, Lowtemperature copper ordering in the layered thiophosphate CuVP2S6: A time-of-flight neutron powder diffraction study, J. Solid State Chem. 103(2), 514 (1993)
https://doi.org/10.1006/jssc.1993.1129
54 A. Grzechnik, V. B. Cajipe, C. Payen, and P. F. McMillan, Pressure-induced phase transition in ferrielectric CuInP2S6, Solid State Commun. 108(1), 43 (1998)
https://doi.org/10.1016/S0038-1098(98)00297-X
55 V. S. Shusta, I. P. Prits, P. P. Guranich, E. I. Gerzanich, and A. G. Slivka, Dielectric properties of CuInP2S6 crystals under high pressure, Condens. Matter Phys. 10(1), 91 (2007)
https://doi.org/10.5488/CMP.10.1.91
56 P. P. Guranich, A. G. Slivka, V. S. Shusta, O. O. Gomonnai, and I. P. Prits, Optical and dielectric properties of CuInP2S6 layered crystals at high hydrostatic pressure, J. Phys. Conf. Ser. 121(2), 022015 (2008)
https://doi.org/10.1088/1742-6596/121/2/022015
57 A. Dziaugys, J. Banys, and Y. Vysochanskii, Broadband dielectric investigations of indium rich CuInP2S6 layered crystals, Z. Kristallogr. Cryst. Mater. 226(2), 171 (2011)
https://doi.org/10.1524/zkri.2011.1323
58 A. Dziaugys, J. Banys, V. Samulionis, J. Macutkevic, Y. Vysochanskii, V. Shvartsman, and W. Kleemann, Phase transitions in layered semiconductor-ferroelectrics, in: Ferroelectrics-Characterization and Modeling, IntechOpen, 2011
https://doi.org/10.5772/20008
59 G. A. Samara, T. Sakudo, and K. Yoshimitsu, Important generalization concerning the role of competing forces in displacive phase transitions, Phys. Rev. Lett. 35(26), 1767 (1975)
https://doi.org/10.1103/PhysRevLett.35.1767
60 A. K. Jonscher, Dielectric relaxation in solids, J. Phys. D Appl. Phys. 32(14), R57 (1999)
https://doi.org/10.1088/0022-3727/32/14/201
61 A. K. Jonscher, The “universal”dielectric response, Nature 267(5613), 673 (1977)
https://doi.org/10.1038/267673a0
62 V. Maisonneuve, J. M. Reau, M. Dong, V. B. Cajipe, C. Payen, and J. Ravez, Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6, Ferroelectrics 196(1), 257 (1997)
https://doi.org/10.1080/00150199708224175
63 Y. M. Vysochanskii, A. A. Molnar, V. A. Stephanovich, V. B. Cajipe, and X. Bourdon, Dipole ordering and critical behavior of the static and dynamic properties in threedimensional and layered MMP2X crystals (M, M=Sn, Cu, In; X=S, Se), Ferroelectrics 226(1), 243 (1999)
https://doi.org/10.1080/00150199908230302
64 J. Banys, J. Macutkevic, V. Samulionis, A. Brilingas, and Y. Vysochanskii, Dielectric and ultrasonic investigation of phase transition in CuInP2S6 crystals, Phase Transit. 77(4), 345 (2004)
https://doi.org/10.1080/01411590410001667608
65 J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Gordon and Breach Science Publ, OPA Amsterdam, 1996
66 J. F. Scott, Soft-mode spectroscopy: Experimental studies of structural phase transitions, Rev. Mod. Phys. 46(1), 83 (1974)
https://doi.org/10.1103/RevModPhys.46.83
67 D. Xu, R. Ma, Y. Zhao, Z. Guan, Q. Zhong, R. Huang, P. Xiang, N. Zhong, and C. Duan, Unconventional outof- plane domain inversion via in-plane ionic migration in a van der Waals ferroelectric, J. Mater. Chem. C 8(21), 6966 (2020)
https://doi.org/10.1039/D0TC01620A
68 R. R. Mehta, B. D. Silverman, and J. T. Jacobs, Depolarization fields in thin ferroelectric films, J. Appl. Phys. 44(8), 3379 (1973)
https://doi.org/10.1063/1.1662770
69 M. Chyasnavichyus, M. A. Susner, A. V. Ievlev, E. A. Eliseev, S. V. Kalinin, N. Balke, A. N. Morozovska, M. A. McGuire, and P. Maksymovych, Size-effect in layered ferrielectric CuInP2S6, Appl. Phys. Lett. 109(17), 172901 (2016)
https://doi.org/10.1063/1.4965837
70 M. F. Chisholm, W. Luo, M. P. Oxley, S. T. Pantelides, and H. N. Lee, Atomic-scale compensation phenomena at polar interfaces, Phys. Rev. Lett. 105(19), 197602 (2010)
https://doi.org/10.1103/PhysRevLett.105.197602
71 G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics, Rev. Mod. Phys. 84(1), 119 (2012)
https://doi.org/10.1103/RevModPhys.84.119
72 M. Dawber, A. Gruverman, and J. F. Scott, Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets, J. Phys.: Condens. Matter 18(5), L71 (2006)
https://doi.org/10.1088/0953-8984/18/5/L03
73 W. J. Hu, D. M. Juo, L. You, J. Wang, Y. C. Chen, Y. H. Chu, and T. Wu, Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films, Sci. Rep. 4(1), 4772 (2015)
https://doi.org/10.1038/srep04772
74 Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song, Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films, Appl. Phys. Lett. 86(9), 092905 (2005)
https://doi.org/10.1063/1.1870126
75 Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn. 31(2), 506 (1971)
https://doi.org/10.1143/JPSJ.31.506
76 A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films, Phys. Rev. B 66(21), 214109 (2002)
https://doi.org/10.1103/PhysRevB.66.214109
77 I. W. Chen, and Y. Wang, Activation field and fatigue of (Pb,La)(Zr,Ti)O3 thin films, Appl. Phys. Lett. 75(26), 4186 (1999)
https://doi.org/10.1063/1.125577
78 H. Ma, W. Gao, J. Wang, T. Wu, G. Yuan, J. Liu, and Z. Liu, Ferroelectric polarization switching dynamics and domain growth of triglycine sulfate and imidazolium perchlorate, Adv. Electron. Mater. 2(6), 1600038 (2016)
https://doi.org/10.1002/aelm.201600038
79 W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev. 95(3), 690 (1954)
https://doi.org/10.1103/PhysRev.95.690
80 P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3, Phys. Rev. B 74(22), 224412 (2006)
https://doi.org/10.1103/PhysRevB.74.224412
81 R. Landauer, Electrostatic considerations in BaTiO3 domain formation during polarization reversal, J. Appl. Phys. 28(2), 227 (1957)
https://doi.org/10.1063/1.1722712
82 P. Ben Ishai, C. E. M. de Oliveira, Y. Ryabov, A. J. Agranat, and Y. Feldman, Unusual glass-like systemsrelaxation dynamics of Cu+ ions in ferroelectric KTN crystals, J. Non-Cryst. Solids 351(33–36), 2786 (2005)
https://doi.org/10.1016/j.jnoncrysol.2005.04.073
83 I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride), Nat. Mater. 15(1), 78 (2016)
https://doi.org/10.1038/nmat4423
84 V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, and A. L. Kholkin, Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride) (PVDF), J. Mol. Model. 19(9), 3591 (2013)
https://doi.org/10.1007/s00894-013-1891-z
85 F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B 56(16), R10024 (1997)
https://doi.org/10.1103/PhysRevB.56.R10024
86 S. Liu and R. E. Cohen, Origin of negative longitudinal piezoelectric effect, Phys. Rev. Lett. 119(20), 207601 (2017)
https://doi.org/10.1103/PhysRevLett.119.207601
87 M. G. Broadhurst and G. T. Davis, Physical basis for piezoelectricity in PVDF, Ferroelectrics 60(1), 3 (1984)
https://doi.org/10.1080/00150198408017504
88 R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sens. Act. A Phys. 64(1), 77 (1998)
https://doi.org/10.1016/S0924-4247(97)01657-9
89 I. Urbanaviciute, X. Meng, M. Biler, Y. Wei, T. D. Cornelissen, S. Bhattacharjee, M. Linares, and M. Kemerink, Negative piezoelectric effect in an organic supramolecular ferroelectric, Mater. Horiz. 6(8), 1688 (2019)
https://doi.org/10.1039/C9MH00094A
90 J. Kim, K. M. Rabe, and D. Vanderbilt, Negative piezoelectric response of van der Waals layered bismuth tellurohalides, Phys. Rev. B 100(10), 104115 (2019)
https://doi.org/10.1103/PhysRevB.100.104115
91 D. M. Bercha, S. Bercha, K. Glukhov, and M. Sznajder, Electron-phonon interaction as a mechanism of phase transition in the CuInP2S6 crystal, Acta Phys. Pol. A 126(5), 1143 (2014)
https://doi.org/10.12693/APhysPolA.126.1143
92 D. M. Bercha, S. A. Bercha, K. E. Glukhov, and M. Sznajder, Vibronic interaction in crystals with the Jahn– Teller centers in the elementary energy bands concept, Condens. Matter Phys. 18(3), 33705 (2015)
https://doi.org/10.5488/CMP.18.33705
93 T. Babuka, K. Glukhov, Y. Vysochanskii, and M. Makowska-Janusik, Layered ferrielectric crystals CuInP2S(Se)6: A study from the first principles, Phase Transit. 92(5), 440 (2019)
https://doi.org/10.1080/01411594.2019.1587439
94 T. Babuka, K. Glukhov, Y. Vysochanskii, and M. Makowska-Janusik, Structural, electronic, vibration and elastic properties of the layered AgInP2S6 semiconducting crystal-DFT approach, RSC Adv. 8(13), 6965 (2018)
https://doi.org/10.1039/C7RA13519J
95 Y. Fagot-Revurat, X. Bourdon, F. Bertran, V. B. Cajipe, and D. Malterre, Interplay between electronic and crystallographic instabilities in the low-dimensional ferroelectric CuInP2Se6, J. Phys.: Condens. Matter 15(3), 595 (2003)
https://doi.org/10.1088/0953-8984/15/3/323
96 C. Zhang, Y. Nie, and A. Du, Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2X6 Materials, Acta Physico-Chimica Sinica 35(10), 1128 (2019)
https://doi.org/10.3866/PKU.WHXB201812037
97 Y. M. Vysochanskii, V. A. Stephanovich, A. A. Molnar, V. B. Cajipe, and X. Bourdon, Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6, Phys. Rev. B 58(14), 9119 (1998)
https://doi.org/10.1103/PhysRevB.58.9119
98 T. V. Misuryaev, T. V. Murzina, O. A. Aktsipetrov, N. E. Sherstyuk, V. B. Cajipe, and X. Bourdon, Second harmonic generation in the lamellar ferrielectric CuInP2S6, Solid State Commun. 115(11), 605 (2000)
https://doi.org/10.1016/S0038-1098(00)00257-X
99 I. P. Studenyak, V. V. Mitrovcij, G. S. Kovacs, M. I. Gurzan, O. A. Mykajlo, Y. M. Vysochanskii, and V. B. Cajipe, Disordering effect on optical absorption processes in CuInP2S6 layered ferrielectrics, Phys. Stat. Solid. B 236(3), 678 (2003)
https://doi.org/10.1002/pssb.200301513
100 M. Moustafa, A. Wasnick, C. Janowitz, and R. Manzke, Temperature shift of the absorption edge and Urbach tail of ZrSxSe2−x single crystals, Phys. Rev. B 95(24), 245207 (2017)
https://doi.org/10.1103/PhysRevB.95.245207
101 F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92(5), 1324 (1953)
https://doi.org/10.1103/PhysRev.92.1324
102 M. Kranjčec, D. I. Desnica, B. Celustka, G. S. Kovacs, and I. P. Studenyak, Fundamental optical absorption edge and compositional disorder in γ1-(GaxIn1−x)2Se3 single crystals, Phys. Stat. Solid. A 144(1), 223 (1994)
https://doi.org/10.1002/pssa.2211440125
103 V. Samulionis, J. Banys, Yu. Vysochanskii, and V. Cajipe, Elastic and electromechanical properties of new ferroelectric-semiconductor materials of Sn2P2S6 family, Ferroelectrics 257(1), 113 (2001)
https://doi.org/10.1080/00150190108016289
104 V. Samulionis, J. Banys, and Y. Vysochanskii, Linear and nonlinear elastic properties of CuInP2S6 layered crystals under polarization reversal,Ferroelectrics 389(1), 18 (2009)
https://doi.org/10.1080/00150190902987459
105 V. Samulionis, J. Banys, and Y. Vysochanskii, The characterization of two dimensional electrostrictive CuInP2S6 materials for transducers, in: Materials science forum, Vol. 514, pp 230–234, Trans Tech Publications, 2006
https://doi.org/10.4028/www.scientific.net/MSF.514-516.230
106 V. Samulionis, J. Banys, and Y. Vysochanskii, Ultrasonic and piezoelectric studies of phase transitions in two-dimensional CuInP2S6 type crystals, Ferroelectrics 379(1), 69 (2009)
https://doi.org/10.1080/00150190902850798
107 A. Dziaugys, J. Banys, V. Samulionis, and Y. Vysochanskii, Dielectric and ultrasonic studies of new Ag0.1Cu0.9InP2S6 layered ferroelectric compound, Ultragarsas 63(3), 7 (2008)
108 A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol. 7(2), 101 (2012)
https://doi.org/10.1038/nnano.2011.213
109 A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
110 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
https://doi.org/10.1038/nnano.2010.172
111 S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A. Nie, J. Xiang, Z. Liu, W. Zhu, and H. Zeng, Nonvolatile ferroelectric memory effect in ultrathin α- In2Se3, Adv. Funct. Mater. 29(20), 1808606 (2019)
https://doi.org/10.1002/adfm.201808606
112 W. Huang, F. Wang, L. Yin, R. Cheng, Z. Wang, M. G. Sendeku, J. Wang, N. Li, Y. Yao, and J. He, Gatecoupling- enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions, Adv. Mater. 32(14), 1908040 (2020)
https://doi.org/10.1002/adma.201908040
113 X. Wang, C. Liu, Y. Chen, G. Wu, X. Yan, H. Huang, P. Wang, B. Tian, Z. Hong, Y. Wang, Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels, 2D Mater. 4(2), 025036 (2017)
https://doi.org/10.1088/2053-1583/aa5c17
114 H. S. Lee, S. W. Min, M. K. Park, Y. T. Lee, P. J. Jeon, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheets for topgate nonvolatile memory transistor channel, Small 8(20), 3111 (2012)
https://doi.org/10.1002/smll.201200752
115 A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, Negative capacitance in a ferroelectric capacitor, Nat. Mater. 14(2), 182 (2015)
https://doi.org/10.1038/nmat4148
116 X. Wang, Y. Chen, G. Wu, D. Li, L. Tu, S. Sun, H. Shen, T. Lin, Y. Xiao, M. Tang, W. Hu, L. Liao, P. Zhou, J. Sun, X. Meng, J. Chu, and J. Wang, Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating, npj 2D Mater. Appl. 1(1), 38 (2017)
https://doi.org/10.1038/s41699-017-0040-4
117 M. Si, C. Jiang, W. Chung, Y. Du, M. A. Alam, and P. D. Ye, Steep-slope WSe2 negative capacitance field-effect transistor, Nano Lett. 18(6), 3682 (2018)
https://doi.org/10.1021/acs.nanolett.8b00816
118 M. Si, C.J. Su, C. Jiang, N. J. Conrad, H. Zhou, K. D. Maize, G. Qiu, C.T. Wu, A. Shakouri, M. A. Alam, and P. D. Ye, Steep-slope hysteresis-free negative capacitance MoS2 transistors, Nat. Nanotechnol. 13(1), 24 (2018)
https://doi.org/10.1038/s41565-017-0010-1
119 H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9), 4674 (2012)
https://doi.org/10.1021/nl302015v
120 J. Wu, H.Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, Q. Sun, X. Ling, J. Guo, and H. Wang, High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation, Nat. Elctron. 3, 466 (2020)
https://doi.org/10.1038/s41928-020-0441-9
121 B. A. Tuttle and D. A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics, Ferroelectrics 37(1), 603 (1981)
https://doi.org/10.1080/00150198108223496
122 A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science 311(5765), 1270 (2006)
https://doi.org/10.1126/science.1123811
123 R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh, Y. S. Ju, and Q. Pei, Highly efficient electrocaloric cooling with electrostatic actuation, Science 357(6356), 1130 (2017)
https://doi.org/10.1126/science.aan5980
124 H. Hu, W. Tong, Y. Shen, and C. G. Duan, Electrical control of the valley degree of freedom in 2D ferroelectric/antiferromagnetic heterostructures, J. Mater. Chem. C 8(24), 8098 (2020)
https://doi.org/10.1039/D0TC01680B
125 S. M. Neumayer, L. Tao, A. O’Hara, J. Brehm, M. Si, P. Y. Liao, T. Feng, S. V. Kalinin, P. D. Ye, S. T. Pantelides, P. Maksymovych, and N. Balke, Alignment of polarization against an electric field in van der Waals ferroelectrics, Phys. Rev. Appl. 13(6), 064063 (2020)
https://doi.org/10.1103/PhysRevApplied.13.064063
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[4] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[5] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[6] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[7] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[8] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[9] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[10] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[11] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[12] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[13] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[14] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[15] Jing Tian, Jun Liu, Hai-Bo Qiu, Xiao-Qiang Xi. Dynamical phase transitions in a two-species bosonic Josephson junction[J]. Front. Phys. , 2017, 12(5): 120509-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed