Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (6) : 63604    https://doi.org/10.1007/s11467-019-0932-1
RESEARCH ARTICLE
Thermally activated phase transitions in Fe-Ni core-shell nanoparticles
Jin-Bo Wang, Rao Huang(), Yu-Hua Wen()
Department of Physics, Jiujiang Research Institute and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, China
 Download: PDF(9812 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe-Ni core-shell nanoparticles are versatile functional materials, and their thermal stabilities are crucial for their performances in operating conditions. In this study, the thermodynamic behaviors of Fe-Ni core-shell nanoparticles are examined under continuous heating. The solid–solid phase transition from body centered cubic (bcc) to face centered cubic (fcc) in the Fe core is identified. The transition is accompanied with the generation of stacking faults around the core-shell interface, which notably lowers the melting points of the Fe-Ni core-shell nanoparticles and causes even worse thermal stability compared with Ni ones. Moreover, the temperature of the structural transformation is shown to be tuned by modifying the Ni shell thickness. Finally, the stress distributions of the core and the shell are also explored. The relevant results could be helpful for the design, preparation, and utilization of Fe-based nanomaterials.

Keywords core-shell      metallic      nanoparticle      phase transition      molecular dynamics     
Corresponding Author(s): Rao Huang,Yu-Hua Wen   
Issue Date: 22 November 2019
 Cite this article:   
Jin-Bo Wang,Rao Huang,Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0932-1
https://academic.hep.com.cn/fop/EN/Y2019/V14/I6/63604
1 V. Amendola, P. Riello, and M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents, J. Phys. Chem. C 115(12), 5140 (2011)
https://doi.org/10.1021/jp109371m
2 D. L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small 1(5), 482 (2005)
https://doi.org/10.1002/smll.200500006
3 Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40(7), 4167 (2011)
https://doi.org/10.1039/c0cs00176g
4 Y. X. Chen, S. P. Chen, Z. Y. Zhou, N. Tian, Y. X. Jiang, S. G. Sun, Y. Ding, and Z. L. Wang, Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry, J. Am. Chem. Soc. 131(31), 10860 (2009)
https://doi.org/10.1021/ja904225q
5 L. M. Lacroix, N. F. Huls, D. Ho, X. L. Sun, K. Cheng, and S. H. Sun, Stable single-crystalline body centered cubic Fe nanoparticles, Nano Lett. 11(4), 1641 (2011)
https://doi.org/10.1021/nl200110t
6 A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26(18), 3995 (2005)
https://doi.org/10.1016/j.biomaterials.2004.10.012
7 X. Zhao, W. Liu, Z. Q. Cai, B. Han, T. W. Qian, and D. Y. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100, 245 (2016)
https://doi.org/10.1016/j.watres.2016.05.019
8 T. Phenrat, D. Schoenfelder, T. L. Kirschling, R. D. Tilton, and G. V. Lowry, Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene, Environ. Sci. Pollut. Res. Int. 25(8), 7157 (2018)
https://doi.org/10.1007/s11356-015-5092-4
9 A. P. Douvalis, R. Zboril, A. B. Bourlinos, J. Tucek, S. Spyridi, and T. Bakas, A facile synthetic route toward airstable magnetic nanoalloys with Fe–Ni/Fe–Co core and iron oxide shell, J. Nanopart. Res. 14(9), 1130 (2012)
https://doi.org/10.1007/s11051-012-1130-z
10 S. F. Moustafa and W. M. Daoush, Synthesis of nanosized Fe-Ni powder by chemical process for magnetic applications, J. Mater. Process. Technol. 181(1–3), 59 (2007)
https://doi.org/10.1016/j.jmatprotec.2006.03.008
11 P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys. 36(13), R182 (2003)
https://doi.org/10.1088/0022-3727/36/13/202
12 S. K. Sanjay, A. K. Singh, K. Aranishi, and Q. Xu, Noblemetal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc. 133(49), 19638 (2011)
https://doi.org/10.1021/ja208475y
13 S. A. Theofanidis, V. V. Galvita, H. Poelman, and G. B. Marin, Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe, ACS Catal. 5(5), 3028 (2015)
https://doi.org/10.1021/acscatal.5b00357
14 Y. H. Tee, L. Bachas, and D. Bhattacharyya, Degradation of trichloroethylene by iron-based bimetallic nanoparticles, J. Phys. Chem. C 113(22), 9454 (2009)
https://doi.org/10.1021/jp809098z
15 M. Rivero-Huguet and W. D. Marshall, Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles, J. Hazard. Mater. 169(1–3), 1081 (2009)
https://doi.org/10.1016/j.jhazmat.2009.04.062
16 G. Bonny, R. C. Pasianot, and L. Malerba, Fe-Ni manybody potential for metallurgical applications, Model. Simul. Mater. Sci. Eng. 17(2), 025010 (2009)
https://doi.org/10.1088/0965-0393/17/2/025010
17 K. Vörtler, N. Juslin, G. Bonny, L. Malerba, and K. Nordlund, The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys, J. Phys.: Condens. Matter 23(35), 355007 (2011)
https://doi.org/10.1088/0953-8984/23/35/355007
18 N. Anento, A. Serra, and Y. Osetsky, Effect of nickel on point defects diffusion in Fe-Ni alloys, Acta Mater. 132, 367 (2017)
https://doi.org/10.1016/j.actamat.2017.05.010
19 C. G. Zhang, K. Ma, N. Q. Zhao, and Z. H. Yuan, A core-shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions, Cryst. Growth Des. 18(12), 7470 (2018)
https://doi.org/10.1021/acs.cgd.8b01249
20 Y. Qi, T. Cagin, W. L. Johnson, and W. A. III Goddard, Melting and crystallization in Ni nanoclusters: The mesoscale regime, J. Chem. Phys. 115(1), 385 (2001)
https://doi.org/10.1063/1.1373664
21 R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Thermal stability of platinum nanowires: a comparison study between single-crystalline and twinned structures, J. Mater. Chem. 21(47), 18998 (2011)
https://doi.org/10.1039/c1jm13217b
22 Q. S. Mei and K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci. 52(8), 1175 (2007)
https://doi.org/10.1016/j.pmatsci.2007.01.001
23 Y. Shibuta and T. Suzuki, Melting and nucleation of iron nanoparticles: A molecular dynamics study, Chem. Phys. Lett. 445(4–6), 265 (2007)
https://doi.org/10.1016/j.cplett.2007.07.098
24 R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Structure and stability of platinum nanocrystals: From low-index to high-index facets, J. Mater. Chem. 21(31), 11578 (2011)
https://doi.org/10.1039/c1jm10125k
25 C. Kittel, Introduction to Solid State Physics, John Wiley & Sons Press, 1956
26 R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Pt-Pd bimetallic catalysts: Structural and thermal stabilities of core-shell and alloyed nanoparticles, J. Phys. Chem. C 116(15), 8664 (2012)
https://doi.org/10.1021/jp3015639
27 J. D. Honeycutt and H. C. Andersen, Molecular-dynamics study of melting and freezing of small Lennard–Jones clusters, J. Phys. Chem. 91(19), 4950 (1987)
https://doi.org/10.1021/j100303a014
28 L. Sandoval, H. M Urbassek, and P. Entel, The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe, New J. Phys. 11(10), 103027 (2009)
https://doi.org/10.1088/1367-2630/11/10/103027
29 R. Huang, S. F. Shao, X. M. Zeng, and Y. H. Wen, Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: A perspective from molecular dynamics simulations, Sci. Rep. 4(1), 7051 (2015)
https://doi.org/10.1038/srep07051
30 R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Atomicscale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles, Phys. Chem. Chem. Phys. 18(14), 9847 (2016)
https://doi.org/10.1039/C5CP07555F
31 C. Mottet, G. Rossi, F. Baletto, and R. Ferrando, Single impurity effect on the melting of nanoclusters, Phys. Rev. Lett. 95(3), 035501 (2005)
https://doi.org/10.1103/PhysRevLett.95.035501
32 D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Structural defects in amorphous solids Statistical analysis of a computer model, Philos. Mag. A 44(4), 847 (1981)
https://doi.org/10.1080/01418618108239553
33 Y. T. Cheng, and M. W. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles, J. Appl. Phys. 104(8), 083521 (2008)
https://doi.org/10.1063/1.3000442
34 V. I. Levitas and K. Samani, Size and mechanics effects in surface-induced melting of nanoparticles, Nat. Commun. 2(1), 284 (2011)
https://doi.org/10.1038/ncomms1275
35 H. Hasegawa and D. G. Pettifor, Microscopic theory of the temperature-pressure phase diagram of iron, Phys. Rev. Lett. 50(2), 130 (1983)
https://doi.org/10.1103/PhysRevLett.50.130
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[6] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[7] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[8] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[9] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[10] T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition[J]. Front. Phys. , 2019, 14(2): 23601-.
[11] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[12] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[13] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[14] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[15] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed