|
|
Dynamics of the phase-change material GeTe across the structural phase transition |
T. Chatterji1, S. Rols1, U. D. Wdowik2( ) |
1. Institut Laue-Langevin, 71 avenue des Martyres, 38000 Grenoble, France 2. Institut of Technology, Pedagogical University, Podchorazych 2, PL-30-084 Krakow, Poland |
|
|
Abstract Results of inelastic neutron scattering experiments and ab initio molecular dynamics simulations for GeTe – the parent compound of phase-change materials are reported. The inelastic neutron spectra of GeTe powder samples have been determined in the temperature range extending from 300 to 700 K. The phonon peaks undergo thermal shifts resulting from anharmonic effects being weaker for acoustic than optic modes. A small concentration of free charge carries arising from the presence of Ge-vacancies was found not to affect significantly the neutron weighted phonon densities of states of GeTe. The spectral pattern changes qualitatively across the structural phase transition, but the local structure of GeTe remains hardly affected, as confirmed by the analysis of temperature dependence of the pairdistribution function obtained from ab initio molecular dynamics investigations. The present theoretical studies support in a wide extent our experimental observations and also those provided by local probe methods.
|
Keywords
phase-change materials
inelastic neutron scattering
ab initio molecular dynamics
|
Corresponding Author(s):
U. D. Wdowik
|
Issue Date: 24 October 2018
|
|
1 |
M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. 6(11), 824 (2007)
https://doi.org/10.1038/nmat2009
|
2 |
S. Raoux, F. Xiong, M. Wuttig, and E. Pop, Phase change materials and phase change memory, MRS Bull. 39(08), 703 (2014)
https://doi.org/10.1557/mrs.2014.139
|
3 |
L. Wang, L. Tu, and J. Wen, Application of phase-change materials in memory taxonomy, Sci. Technol. Adv. Mater. 18(1), 406 (2017)
https://doi.org/10.1080/14686996.2017.1332455
|
4 |
E. F. Steigmeier and G. Harbeke, Soft phonon mode and ferroelectricity in GeTe, Solid State Commun. 8(16), 1275 (1970)
https://doi.org/10.1016/0038-1098(70)90619-8
|
5 |
T. Chattopadhyay, J. X. Boucherele, and H. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C 20(10), 1431 (1987)
|
6 |
P. Fons, A. V. Kolobov, M. Krbal, J. Tominaga, K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, and T. Uruga, Phase transition in crystalline GeTe: Pitfalls of averaging effects, Phys. Rev. B 82(15), 155209 (2010)
https://doi.org/10.1103/PhysRevB.82.155209
|
7 |
T. Matsunaga, P. Fons, V. Kolobov, J. Tominaga, and N. Yamada, The order-disorder transition in GeTe: Views from different length-scales, Appl. Phys. Lett. 99(23), 231907 (2011)
https://doi.org/10.1063/1.3665067
|
8 |
F. Kadlec, C. Kadlec, P. Kužel, and J. Petzelt, Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy, Phys. Rev. B 84(20), 205209 (2011)
https://doi.org/10.1103/PhysRevB.84.205209
|
9 |
M. J. Polking, J. J. Urban, D. J. Milliron, H. Zheng, E. Chan, M. A. Caldwell, S. Raoux, C. F. Kisielowski, J. W. III Ager, R. Ramesh, and A. P. Alivisatos, Sizedependent polar ordering in colloidal GeTe nanocrystals, Nano Lett. 11(3), 1147 (2011)
https://doi.org/10.1021/nl104075v
|
10 |
J. Hudspeth, T. Chatterji, S. Billinge, and S. Kimber, Unifying local and average structure in the phase change material GeTe, arXiv: 1506.08944 (2015)
|
11 |
T. Chatterji, C. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)
https://doi.org/10.1103/PhysRevB.91.054110
|
12 |
G. Kalra and S. Murugavel, The role of atomic vacancies on phonon confinement in a-GeTe, AIP Adv. 5(4), 047127 (2015)
https://doi.org/10.1063/1.4918696
|
13 |
D. Yang, T. Chatterji, J. A. Schiemer, and M. A. Carpenter, Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride, Phys. Rev. B 93(14), 144109 (2016)
https://doi.org/10.1103/PhysRevB.93.144109
|
14 |
M. Sist, H. Kasai, E. M. J. Hedegaard, and B. B. Iversen, Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe, Phys. Rev. B 97(9), 094116 (2018)
https://doi.org/10.1103/PhysRevB.97.094116
|
15 |
S. D. Gupta, G. V. Varada, and G. S. Agarwal, Surface plasmons in two-sided corrugated thin films, Phys. Rev. B 36(12), 6331 (1987)
https://doi.org/10.1103/PhysRevB.36.6331
|
16 |
J. Raty, V. Godlevsky, P. Ghosez, C. Bichara, J. Gaspard, and J. Chelikowsky, Evidence of a reentrant Peierls distortion in liquid GeTe, Phys. Rev. Lett. 85(9), 1950 (2000)
https://doi.org/10.1103/PhysRevLett.85.1950
|
17 |
R. Shaltaf, X. Gonze, M. Cardona, R. K. Kremer, and G. Siegle, Lattice dynamics and specific heat of a-GeTe: Theoretical and experimental study, Phys. Rev. B 79(7), 075204 (2009)
https://doi.org/10.1103/PhysRevB.79.075204
|
18 |
A. J. Bevolo, H. R. Shanks, and D. E. Eckels, Molar heat capacity of GeTe, SnTe, and PbTe from 0.9 to 60 K, Phys. Rev. B 13(8), 3523 (1976)
https://doi.org/10.1103/PhysRevB.13.3523
|
19 |
J. Raty, P. Noé, G. Ghezzi, S. Maitrejean, C. Bichara, and F. Hippert, Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe, Phys. Rev. B 88(1), 014203 (2013)
https://doi.org/10.1103/PhysRevB.88.014203
|
20 |
U. D. Wdowik, K. Parlinski, S. Rols, and T. Chatterji, Soft-phonon mediated structural phase transition in GeTe, Phys. Rev. B 89(22), 224306 (2014)
https://doi.org/10.1103/PhysRevB.89.224306
|
21 |
K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H. S. Jeong, and M. H. Cho, Evolution of crystal structures in GeTe during phase transition, Sci. Rep. 7(1), 955 (2017)
https://doi.org/10.1038/s41598-017-01154-z
|
22 |
-D. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savić, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)
https://doi.org/10.1103/PhysRevB.97.224106
|
23 |
R. Mittal, M. K. Gupta, S. L. Chaplot, M. Zbiri, S. Rols, H. Schober, Y. Su, T. Brueckel, and T. Wolf, Spin-phonon coupling in K0.8Fe1.6Se2 and KFe2Se2: Inelastic neutron scattering and ab initiophonon calculations, Phys. Rev. B 87(18), 184502 (2013)
https://doi.org/10.1103/PhysRevB.87.184502
|
24 |
H. Schober, A. Tölle, B. Renker, R. Heid, and F. Gompf, Microscopic dynamics of A 60C compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering, Phys. Rev. B 56(10), 5937 (1997)
https://doi.org/10.1103/PhysRevB.56.5937
|
25 |
S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon Press, 1986
|
26 |
G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications, 1997
|
27 |
V. F. Sears, Neutron scattering lengths and cross sections, Neutron News 3(3), 26 (1992)
https://doi.org/10.1080/10448639208218770
|
28 |
U. D. Wdowik, K. Parlinski, T. Chatterji, S. Rols, and H. Schober, Lattice dynamics of rhenium trioxide from the quasiharmonic approximation, Phys. Rev. B 82(10), 104301 (2010)
https://doi.org/10.1103/PhysRevB.82.104301
|
29 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
30 |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
31 |
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
|
32 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
33 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
https://doi.org/10.1103/PhysRevLett.78.1396
|
34 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
35 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1998)
https://doi.org/10.1103/PhysRevB.59.1758
|
36 |
S. H. Garofalini, Molecular dynamics simulation of the frequency spectrum of amorphous silica, J. Chem. Phys. 76(6), 3189 (1982)
https://doi.org/10.1063/1.443363
|
37 |
T. Róg, K. Murzyn, K. Hinsen, and G. R. Kneller, nMoldyn: A program package for a neutron scattering oriented analysis of molecular dynamics simulations, J. Comput. Chem. 24(5), 657 (2003)
https://doi.org/10.1002/jcc.10243
|
38 |
D. B. Zhang, T. Sun, and R. M. Wentzcovitch, Phonon quasiparticles and anharmonic free energy in complex systems, Phys. Rev. Lett. 112(5), 058501 (2014)
https://doi.org/10.1103/PhysRevLett.112.058501
|
39 |
T. Sun, D. B. Zhang, and R. M. Wentzcovitch, Dynamic stabilization of cubic CaSiO3 perovskite at high temperatures and pressures from ab initiomolecular dynamics, Phys. Rev. B 89(9), 094109 (2014)
https://doi.org/10.1103/PhysRevB.89.094109
|
40 |
U. D. Wdowik and K. Parlinski, Lattice dynamics of cobalt-deficient CoO from first principles, Phys. Rev. B 78(22), 224114 (2008)
https://doi.org/10.1103/PhysRevB.78.224114
|
41 |
U. D. Wdowik and K. Parlinski, Lattice dynamics of Fedoped CoO from first principles, J. Phys.: Condens. Matter 21(12), 125601 (2009)
https://doi.org/10.1088/0953-8984/21/12/125601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|