|
|
The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis |
Francesco Mallamace1,2,3( ),Carmelo Corsaro2,3,Domenico Mallamace4,Zhe Wang1,Sow-Hsin Chen1,*( ) |
1. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2. Dipartimento di Fisica e Scienze della Terra, Universit`a di Messina, I-98166, Messina, Italy 3. Consiglio Nazionale delle Ricerche-IPCF Messina, I-98166, Messina, Italy 4. Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimentie, e della Salute, Università di Messina Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy |
|
|
Abstract The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the “low-density liquid” (LDL) and “high-density liquid” (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature TW as the (P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.
|
Keywords
supercooled water
liquid-liquid phase transition (LLPT)
inelastic neutron scattering
|
Corresponding Author(s):
Sow-Hsin Chen
|
Issue Date: 26 October 2015
|
|
1 |
D. Kennedy, 125th Anniversary Issue: 125 outstanding problems in all of science: What is the nature of the glassy state, Science 309, 83 (2005)
|
2 |
M. D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51(1), 99 (2000)
https://doi.org/10.1146/annurev.physchem.51.1.99
|
3 |
M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728 (1969)
https://doi.org/10.1063/1.1672587
|
4 |
F. H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 267(5206), 1935 (1995)
https://doi.org/10.1126/science.267.5206.1935
|
5 |
A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002)
https://doi.org/10.1073/pnas.202427399
|
6 |
F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Transport properties of glassforming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA 107(52), 22457 (2010)
https://doi.org/10.1073/pnas.1015340107
|
7 |
S. Yip and M. P. Short, Multiscale materials modeling at the mesoscale, Nat. Mater. 12(9), 774 (2013)
https://doi.org/10.1038/nmat3746
|
8 |
C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)
https://doi.org/10.1126/science.267.5206.1924
|
9 |
J. C. Martinez-Garcia, J. Martinez-Garcia, S. J. Rzoska, and J. Hulliger, The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis, J. Chem. Phys. 137(6), 064501 (2012)
https://doi.org/10.1063/1.4739750
|
10 |
Advances in Chemical Physics, Water Polymorphism, edited by H. E. Stanley, series editor S. A. Rice, Wiley, New York, 2013
|
11 |
F. Mallamace, P. Baglioni, C. Corsaro, J. Spooren, H. E. Stanley, and S.H. Chen, Transport properties of supercooled confined water, Riv. Nuovo Cim. 34, 253 (2011)
|
12 |
F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynam-ical response functions and the origin of the anomalous behavior of liquid water, Farad. Disc. 167, 95 (2013)
|
13 |
F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)
https://doi.org/10.1038/srep00993
|
14 |
O. Mishima, Relationship between melting and amorphization of ice, Nature 384(6609), 546 (1996)
https://doi.org/10.1038/384546a0
|
15 |
F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104(2), 424 (2007)
https://doi.org/10.1073/pnas.0607138104
|
16 |
S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, The violation of the Stokes-Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA 103(35), 12974 (2006)
https://doi.org/10.1073/pnas.0603253103
|
17 |
L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Appearance of a fractional Stokes Einstein relation in water and a structural interpretation of its onset, Nat. Phys. 5(8), 565 (2009)
https://doi.org/10.1038/nphys1328
|
18 |
P. H. Poole, F. Sciortino, U. Essmann, and U. H. E. Stanley, Phase behaviour of metastable water, Nature 360(6402), 324 (1992)
https://doi.org/10.1038/360324a0
|
19 |
L. Liu, S. H. Chen, A. Faraone, C. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)
https://doi.org/10.1103/PhysRevLett.95.117802
|
20 |
L. Xu, P. Kumar, S. V. Buldyrev, S.H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid−liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)
https://doi.org/10.1073/pnas.0507870102
|
21 |
J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106(47), 19780 (2009)
https://doi.org/10.1073/pnas.0911705106
|
22 |
F. Mallamace, C. Corsaro, H. E. Stanley, and S. H. Chen, The role of the dynamic crossover temperature and the arrest in glass-forming fluids, Eur. Phys. J. E 34(9), 94 (2011)
https://doi.org/10.1140/epje/i2011-11094-7
|
23 |
T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Little evidence for dynamic divergences in ultraviscous molecular liquids, Nat. Phys. 4(9), 737 (2008)
https://doi.org/10.1038/nphys1033
|
24 |
M. D. Ediger, C. A. Angell, and S. R. Nagel, Supercooled liquids and glasses, J. Phys. Chem. 100(31), 13200 (1996)
https://doi.org/10.1021/jp953538d
|
25 |
M. D. Ediger and P. Harrowell, Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137(8), 080901 (2012)
https://doi.org/10.1063/1.4747326
|
26 |
V. Lubchenko and P. Wolynes, Theory of structural glasses and supercooled liquids, Annu. Rev. Phys. Chem. 58(1), 235 (2007)
https://doi.org/10.1146/annurev.physchem.58.032806.104653
|
27 |
B. Frick and D. Richter, The microscopic basis of the glass transition in polymers from neutron scattering studies, Science 267(5206), 1939 (1995)
https://doi.org/10.1126/science.267.5206.1939
|
28 |
V. N. Novikov and A. P. Sokolov, A correlation between lowenergy vibrational spectra and first sharp diffraction peak in chalcogenide glasses, Solid State Commun. 77(3), 243 (1991)
https://doi.org/10.1016/0038-1098(91)90341-R
|
29 |
V. K. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov, and M. G. Zemlyanov, Universal form of the lowenergy (2 to 10 meV) vibrational spectrum of glasses, Europhys. Lett. 11(1), 43 (1990)
https://doi.org/10.1209/0295-5075/11/1/008
|
30 |
A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)
https://doi.org/10.1103/PhysRevB.52.R9815
|
31 |
J. Wuttke, J. Hernandez, G. Li, G. Coddens, H. Z. Cummins, F. Fujara, W. Petry, and H. Sillescu, Neutron and light scattering study of supercooled glycerol, Phys. Rev. Lett. 72(19), 3052 (1994)
https://doi.org/10.1103/PhysRevLett.72.3052
|
32 |
B. Hehlen, E. Courtens, R. Vacher, A. Yamanaka, M. Kataoka, and K. Inoue, Hyper-Raman scattering observation of the Boson peak in vitreous silica, Phys. Rev. Lett. 84(23), 5355 (2000)
https://doi.org/10.1103/PhysRevLett.84.5355
|
33 |
J. Wuttke, M. Kiebel, E. Bartsch, F. Fujara, W. Petry, and H. Sillescu, Relaxation and phonons in viscous and glassy orthoterphenyl by neutron scattering, Z. Phys. B 91(3), 357 (1993)
https://doi.org/10.1007/BF01344065
|
34 |
S. Grigera, V. Mart’ın-Mayor, G. Parisi, and P. Verrocchio, Vibrational spectrum of topologically disordered systems, Phys. Rev. Lett. 87(8), 085502 (2001)
https://doi.org/10.1103/PhysRevLett.87.085502
|
35 |
A. P. Sokolov, R. Calemczuk, B. Salce, A. Kisliuk, D. Quitmann, and E. Duval, Low-temperature anomalies in strong and fragile glass formers, Phys. Rev. Lett. 78(12), 2405 (1997)
https://doi.org/10.1103/PhysRevLett.78.2405
|
36 |
H. Shintani and H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)
https://doi.org/10.1038/nmat2293
|
37 |
P. Kumar, K. T. Wikfeldt, D. Schlesinger, L. G. M. Pettersson, and H. E. Stanley, The Boson peak in supercooled water, Sci. Rep. 3, 1980 (2013)
https://doi.org/10.1038/srep01980
|
38 |
S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory, J. Phys.: Condens. Matter 21(50), 504102 (2009)
https://doi.org/10.1088/0953-8984/21/50/504102
|
39 |
Z. Wang, K. H. Liu, P. Le, M. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)
https://doi.org/10.1103/PhysRevLett.112.237802
|
40 |
A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014)
https://doi.org/10.1063/1.4895793
|
41 |
K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Spatially inhomogeneous bimodal inherent structure in simulated liquid water, Phys. Chem. Chem. Phys. 13(44), 19918 (2011)
https://doi.org/10.1039/c1cp22076d
|
42 |
L. Hong, B. Begen, A. Kisliuk, C. Alba-Simionesco, V. N. Novikov, and A. P. Sokolov, Pressure and density dependence of the Boson peak in polymers, Phys. Rev. B 78(13), 134201 (2008)
https://doi.org/10.1103/PhysRevB.78.134201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|