|
|
Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling |
Xia Huang1,2( ), Jin Dong1, Wen-Jing Jia3, Zhi-Gang Zheng3, Can Xu3( ) |
1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China 2. Cardiovascular Research Laboratories, Departments of Medicine and Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA 3. Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China |
|
|
Abstract We study the synchronization transition in the Kuramoto model by considering a unidirectional coupling with a chain structure. The microscopic clustering features are characterized in the system. We identify several clustering patterns for the long-time evolution of the effective frequencies and reveal the phase transition between them. Theoretically, the recursive approach is developed in order to obtain analytical insights; the essential bifurcation schemes of the clustering patterns are clarified and the phase diagram is illustrated in order to depict the various phase transitions of the system. Furthermore, these recursive theories can be extended to a larger system. Our theoretical analysis is in agreement with the numerical simulations and can aid in understanding the clustering patterns in the Kuramoto model with a general structure.
|
Keywords
synchronization
coupled phase oscillators
phase transition
|
Corresponding Author(s):
Xia Huang,Can Xu
|
Issue Date: 25 May 2018
|
|
1 |
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12, Cambridge: Cambridge University Press, 2003
|
2 |
S. H. Strogatz, Frontiers in Mathematical Biology, Springer, 2012, pp 122–138
|
3 |
J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci. 35(1), 445 (2012)
https://doi.org/10.1146/annurev-neuro-060909-153128
|
4 |
Z. Qu, Y. Shiferaw, and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E 75(1), 011927 (2007)
https://doi.org/10.1103/PhysRevE.75.011927
|
5 |
I. Aihara, Modeling synchronized calling behavior of Japanese tree frogs, Phys. Rev. E 80(1), 011918 (2009)
https://doi.org/10.1103/PhysRevE.80.011918
|
6 |
S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life, UK: Hachette, 2004
|
7 |
B. C. Daniels, S. T. M. Dissanayake, and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model, Phys. Rev. E 67(2), 026216 (2003)
https://doi.org/10.1103/PhysRevE.67.026216
|
8 |
Y. Kuramoto and H. Araki, Lecture notes in physics, International Symposium on Mathematical Problems in Theoretical Physics, 5 (1975)
|
9 |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, et al., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
|
10 |
C. Xu, J. Gao, H. Xiang, W. Jia, S. Guan, and Z. Zheng, Dynamics of phase oscillators with generalized frequency-weighted coupling, Phys. Rev. E 94(6), 062204 (2016)
https://doi.org/10.1103/PhysRevE.94.062204
|
11 |
H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)
https://doi.org/10.1103/PhysRevLett.117.204101
|
12 |
X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
|
13 |
S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
https://doi.org/10.1016/j.physrep.2016.10.004
|
14 |
H. Chen, Y. Sun, J. Gao, Z. Zheng, and C. Xu, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
https://doi.org/10.1007/s11467-017-0651-4
|
15 |
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
https://doi.org/10.1103/PhysRevE.88.010802
|
16 |
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
|
17 |
H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial standing wave state in frequency-weighted Kuramoto model, Front. Phys. 12(3), 126801 (2017)
https://doi.org/10.1007/s11467-017-0672-z
|
18 |
T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5(1), 18235 (2016)
https://doi.org/10.1038/srep18235
|
19 |
G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
https://doi.org/10.1103/PhysRevLett.100.144102
|
20 |
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
|
21 |
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
https://doi.org/10.1103/PhysRevLett.101.084103
|
22 |
O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E 85(3), 036210 (2012)
https://doi.org/10.1103/PhysRevE.85.036210
|
23 |
J. Sieber, E. Omel’chenko, and M. Wolfrum, Controlling unstable chaos: Stabilizing chimera states by feedback, Phys. Rev. Lett. 112(5), 054102 (2014)
https://doi.org/10.1103/PhysRevLett.112.054102
|
24 |
B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, Europhys. Lett. 118(1), 10001 (2017)
https://doi.org/10.1209/0295-5075/118/10001
|
25 |
S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
https://doi.org/10.1038/s41598-017-02409-5
|
26 |
E. Bolhasani, Y. Azizi, A. Valizadeh, and M. Perc, Synchronization of oscillators through timeshifted common inputs, Phys. Rev. E 95(3), 032207 (2017)
https://doi.org/10.1103/PhysRevE.95.032207
|
27 |
Q. Wang, Z. Duan, M. Perc, and G. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett. 83(5), 50008 (2008)
https://doi.org/10.1209/0295-5075/83/50008
|
28 |
Q. Wang, M. Perc, Z. Duan, and G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E 80(2), 026206 (2009)
https://doi.org/10.1103/PhysRevE.80.026206
|
29 |
Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett. 101, 38002 (2013)
|
30 |
X. Huang, M. Zhan, F. Li, and Z. Zheng, Single clustering synchronization in a ring of Kuramoto oscillators,J. Phys. A 47(12), 125101 (2014)
https://doi.org/10.1088/1751-8113/47/12/125101
|
31 |
P. F. C. Tilles, F. F. Ferreira, and H. A. Cerdeira, Multistable behavior above synchronization in a locally coupled Kuramoto model, Phys. Rev. E 83(6), 066206 (2011)
https://doi.org/10.1103/PhysRevE.83.066206
|
32 |
Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
|
33 |
L. Ren and B. Ermentrout, Phase locking in chains of multiple-coupled oscillators, Physica D 143(1–4), 56 (2000)
https://doi.org/10.1016/S0167-2789(00)00096-8
|
34 |
L. Ren and G. B. Ermentrout, Monotonicity of phaselocked solutions in chains and arrays of nearestneighbour coupled oscillators, SIAM J. Math. Anal. 29(1), 208 (1998)
https://doi.org/10.1137/S0036141096298837
|
35 |
J. A. Rogge and D. Aeyels, Stability of phase locking in a ring of unidirectionally coupled oscillators, J. Phys. Math. Gen. 37(46), 11135 (2004)
https://doi.org/10.1088/0305-4470/37/46/004
|
36 |
H. F. El-Nashar and H. A. Cerdeira, Determination of the critical coupling for oscillators in a ring, Chaos 19(3), 033127 (2009)
https://doi.org/10.1063/1.3212939
|
37 |
G. B. Ermentrout, The behaviour of rings of coupled oscillators, J. Math. Biol. 23(1), 55 (1985)
https://doi.org/10.1007/BF00276558
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|