Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 130506    https://doi.org/10.1007/s11467-018-0783-1
RESEARCH ARTICLE
Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling
Xia Huang1,2(), Jin Dong1, Wen-Jing Jia3, Zhi-Gang Zheng3, Can Xu3()
1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
2. Cardiovascular Research Laboratories, Departments of Medicine and Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
3. Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
 Download: PDF(2152 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the synchronization transition in the Kuramoto model by considering a unidirectional coupling with a chain structure. The microscopic clustering features are characterized in the system. We identify several clustering patterns for the long-time evolution of the effective frequencies and reveal the phase transition between them. Theoretically, the recursive approach is developed in order to obtain analytical insights; the essential bifurcation schemes of the clustering patterns are clarified and the phase diagram is illustrated in order to depict the various phase transitions of the system. Furthermore, these recursive theories can be extended to a larger system. Our theoretical analysis is in agreement with the numerical simulations and can aid in understanding the clustering patterns in the Kuramoto model with a general structure.

Keywords synchronization      coupled phase oscillators      phase transition     
Corresponding Author(s): Xia Huang,Can Xu   
Issue Date: 25 May 2018
 Cite this article:   
Xia Huang,Jin Dong,Wen-Jing Jia, et al. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0783-1
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/130506
1 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12, Cambridge: Cambridge University Press, 2003
2 S. H. Strogatz, Frontiers in Mathematical Biology, Springer, 2012, pp 122–138
3 J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci. 35(1), 445 (2012)
https://doi.org/10.1146/annurev-neuro-060909-153128
4 Z. Qu, Y. Shiferaw, and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E 75(1), 011927 (2007)
https://doi.org/10.1103/PhysRevE.75.011927
5 I. Aihara, Modeling synchronized calling behavior of Japanese tree frogs, Phys. Rev. E 80(1), 011918 (2009)
https://doi.org/10.1103/PhysRevE.80.011918
6 S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life, UK: Hachette, 2004
7 B. C. Daniels, S. T. M. Dissanayake, and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model, Phys. Rev. E 67(2), 026216 (2003)
https://doi.org/10.1103/PhysRevE.67.026216
8 Y. Kuramoto and H. Araki, Lecture notes in physics, International Symposium on Mathematical Problems in Theoretical Physics, 5 (1975)
9 J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, et al., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
10 C. Xu, J. Gao, H. Xiang, W. Jia, S. Guan, and Z. Zheng, Dynamics of phase oscillators with generalized frequency-weighted coupling, Phys. Rev. E 94(6), 062204 (2016)
https://doi.org/10.1103/PhysRevE.94.062204
11 H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)
https://doi.org/10.1103/PhysRevLett.117.204101
12 X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
13 S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
https://doi.org/10.1016/j.physrep.2016.10.004
14 H. Chen, Y. Sun, J. Gao, Z. Zheng, and C. Xu, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
https://doi.org/10.1007/s11467-017-0651-4
15 X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
https://doi.org/10.1103/PhysRevE.88.010802
16 X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
17 H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial standing wave state in frequency-weighted Kuramoto model, Front. Phys. 12(3), 126801 (2017)
https://doi.org/10.1007/s11467-017-0672-z
18 T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5(1), 18235 (2016)
https://doi.org/10.1038/srep18235
19 G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
https://doi.org/10.1103/PhysRevLett.100.144102
20 Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
21 D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
https://doi.org/10.1103/PhysRevLett.101.084103
22 O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E 85(3), 036210 (2012)
https://doi.org/10.1103/PhysRevE.85.036210
23 J. Sieber, E. Omel’chenko, and M. Wolfrum, Controlling unstable chaos: Stabilizing chimera states by feedback, Phys. Rev. Lett. 112(5), 054102 (2014)
https://doi.org/10.1103/PhysRevLett.112.054102
24 B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, Europhys. Lett. 118(1), 10001 (2017)
https://doi.org/10.1209/0295-5075/118/10001
25 S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
https://doi.org/10.1038/s41598-017-02409-5
26 E. Bolhasani, Y. Azizi, A. Valizadeh, and M. Perc, Synchronization of oscillators through timeshifted common inputs, Phys. Rev. E 95(3), 032207 (2017)
https://doi.org/10.1103/PhysRevE.95.032207
27 Q. Wang, Z. Duan, M. Perc, and G. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett. 83(5), 50008 (2008)
https://doi.org/10.1209/0295-5075/83/50008
28 Q. Wang, M. Perc, Z. Duan, and G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E 80(2), 026206 (2009)
https://doi.org/10.1103/PhysRevE.80.026206
29 Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett. 101, 38002 (2013)
30 X. Huang, M. Zhan, F. Li, and Z. Zheng, Single clustering synchronization in a ring of Kuramoto oscillators,J. Phys. A 47(12), 125101 (2014)
https://doi.org/10.1088/1751-8113/47/12/125101
31 P. F. C. Tilles, F. F. Ferreira, and H. A. Cerdeira, Multistable behavior above synchronization in a locally coupled Kuramoto model, Phys. Rev. E 83(6), 066206 (2011)
https://doi.org/10.1103/PhysRevE.83.066206
32 Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
33 L. Ren and B. Ermentrout, Phase locking in chains of multiple-coupled oscillators, Physica D 143(1–4), 56 (2000)
https://doi.org/10.1016/S0167-2789(00)00096-8
34 L. Ren and G. B. Ermentrout, Monotonicity of phaselocked solutions in chains and arrays of nearestneighbour coupled oscillators, SIAM J. Math. Anal. 29(1), 208 (1998)
https://doi.org/10.1137/S0036141096298837
35 J. A. Rogge and D. Aeyels, Stability of phase locking in a ring of unidirectionally coupled oscillators, J. Phys. Math. Gen. 37(46), 11135 (2004)
https://doi.org/10.1088/0305-4470/37/46/004
36 H. F. El-Nashar and H. A. Cerdeira, Determination of the critical coupling for oscillators in a ring, Chaos 19(3), 033127 (2009)
https://doi.org/10.1063/1.3212939
37 G. B. Ermentrout, The behaviour of rings of coupled oscillators, J. Math. Biol. 23(1), 55 (1985)
https://doi.org/10.1007/BF00276558
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras[J]. Front. Phys. , 2020, 15(6): 62501-.
[6] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[7] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[8] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[9] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[10] Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan. Novel transition and Bellerophon state in coupled Stuart–Landau oscillators[J]. Front. Phys. , 2019, 14(3): 33603-.
[11] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[12] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[13] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[14] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[15] Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang. Cluster synchronization in complex network of coupled chaotic circuits: An experimental study[J]. Front. Phys. , 2018, 13(5): 130505-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed