Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 62501    https://doi.org/10.1007/s11467-020-0971-7
RESEARCH ARTICLE
Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras
Qiong-Lin Dai1, Xiao-Xuan Liu1, Kai Yang1, Hong-Yan Cheng1, Hai-Hong Li1, Fagen Xie2(), Jun-Zhong Yang1()
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91101, USA
 Download: PDF(6812 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled identical dynamical units, have been identified in various systems and generalized to coupled nonidentical oscillators. It has been shown that strong heterogeneity in the frequencies of nonidentical oscillators might be harmful to chimera states. In this work, we consider a ring of nonlocally coupled bicomponent phase oscillators in which two types of oscillators are randomly distributed along the ring: some oscillators with natural frequency ω1 and others with ω2 . In this model, the heterogeneity in frequency is measured by frequency mismatch |ω1ω2| between the oscillators in these two subpopulations. We report that the nonlocally coupled bicomponent phase oscillators allow for chimera states no matter how large the frequency mismatch is. The bicomponent oscillators are composed of two chimera states, one supported by oscillators with natural frequency ω1 and the other by oscillators with natural frequency ω2. The two chimera states in two subpopulations are synchronized at weak frequency mismatch, in which the coherent oscillators in them share similar mean phase velocity, and are desynchronized at large frequency mismatch, in which the coherent oscillators in different subpopulations have distinct mean phase velocities. The synchronization–desynchronization transition between chimera states in these two subpopulations is observed with the increase in the frequency mismatch. The observed phenomena are theoretically analyzed by passing to the continuum limit and using the Ott-Antonsen approach.

Keywords chimera states      bicomponent phase oscillators      nonlocal coupling      desynchronization transition     
Corresponding Author(s): Fagen Xie,Jun-Zhong Yang   
Issue Date: 21 July 2020
 Cite this article:   
Qiong-Lin Dai,Xiao-Xuan Liu,Kai Yang, et al. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras[J]. Front. Phys. , 2020, 15(6): 62501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0971-7
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/62501
1 Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
2 D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
3 C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)
https://doi.org/10.1016/j.physd.2009.04.012
4 A. E. Motter, Nonlinear dynamics: Spontaneous synchrony breaking, Nat. Phys. 6(3), 164 (2010)
https://doi.org/10.1038/nphys1609
5 Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, EPL 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
6 M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)
https://doi.org/10.1088/0951-7715/28/3/R67
7 E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
https://doi.org/10.1073/pnas.1302880110
8 M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phasecluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
https://doi.org/10.1038/nphys2371
9 A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
https://doi.org/10.1038/nphys2372
10 H. Cheng, Q. Dai, N. Wu, Y. Feng, H. Li, and J. Yang, Chimera states in nonlocally coupled phase oscillators with biharmonic interaction, Commun. Nonlinear Sci. Numer. Simul. 56, 1 (2018)
https://doi.org/10.1016/j.cnsns.2017.07.015
11 S. S. Gavrilov, Polariton chimeras: Bose–Einstein condensates with intrinsic chaoticity and spontaneous long range ordering, Phys. Rev. Lett. 120(3), 033901 (2018)
https://doi.org/10.1103/PhysRevLett.120.033901
12 H. Xu, G. Wang, L. Huang, and Y. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)
https://doi.org/10.1103/PhysRevLett.120.124101
13 Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, and M. Slavinec, Nonstationary chimeras in a neuronal network, EPL 123(4), 48003 (2018)
https://doi.org/10.1209/0295-5075/123/48003
14 B. K. Bera, S. Rakshit, D. Ghosh, and J. Kurths, Spike chimera states and firing regularities in neuronal hypernetworks, Chaos 29(5), 053115 (2019)
https://doi.org/10.1063/1.5088833
15 S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
https://doi.org/10.1038/s41598-017-02409-5
16 B. K. Bera, D. Ghosh, and T. Banerjee, Imperfect traveling chimera states induced by local synaptic gradient coupling, Phys. Rev. E 94(1), 012215 (2016)
https://doi.org/10.1103/PhysRevE.94.012215
17 I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
https://doi.org/10.1103/PhysRevLett.106.234102
18 I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimeras, Chaos 25(8), 083104 (2015)
https://doi.org/10.1063/1.4927829
19 I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
https://doi.org/10.1103/PhysRevLett.110.224101
20 J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models, Int. J. Bifurcat. Chaos 24(03), 1450030 (2014)
https://doi.org/10.1142/S0218127414500308
21 H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)
https://doi.org/10.1103/PhysRevE.73.031907
22 J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, and H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators, Nat. Phys. 14(3), 282 (2018)
https://doi.org/10.1038/s41567-017-0005-8
23 A. Zakharova, M. Kapeller, and E. Schöll, Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)
https://doi.org/10.1103/PhysRevLett.112.154101
24 Y. L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, and V. L. Maistrenko, Cascades of multiheaded chimera states for coupled phase oscillators, Int. J. Bifurcat. Chaos 24(08), 1440014 (2014)
https://doi.org/10.1142/S0218127414400148
25 E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
https://doi.org/10.1103/PhysRevLett.104.044101
26 C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
https://doi.org/10.1103/PhysRevLett.111.134101
27 S. Guo, Q. Dai, H. Cheng, H. Li, F. Xie, and J. Yang, Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems, Chaos Solitons Fractals 114, 394 (2018)
https://doi.org/10.1016/j.chaos.2018.07.029
28 W. Wang, Q. Dai, H. Cheng, H. Li, and J. Yang, Chimera dynamics in nonlocally coupled moving phase oscillators, Front. Phys. 14(4), 43605 (2019)
https://doi.org/10.1007/s11467-019-0906-3
29 A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)
https://doi.org/10.1103/PhysRevLett.112.144103
30 G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)
https://doi.org/10.1103/PhysRevLett.112.144101
31 V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E 90(6), 062913 (2014)
https://doi.org/10.1103/PhysRevE.90.062913
32 K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E 91(5), 052915 (2015)
https://doi.org/10.1103/PhysRevE.91.052915
33 C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92, 050904(R) (2015)
https://doi.org/10.1103/PhysRevE.92.050904
34 B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E 93(1), 012205 (2016)
https://doi.org/10.1103/PhysRevE.93.012205
35 N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
https://doi.org/10.1103/PhysRevLett.117.014102
36 Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)
https://doi.org/10.1007/s11071-017-3977-0
37 Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
https://doi.org/10.1103/PhysRevLett.119.084101
38 E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E 79(2), 026204 (2009)
https://doi.org/10.1103/PhysRevE.79.026204
39 S. Ghosh, A. Kumar, A. Zakharova, and S. Jalan, Birth and death of chimera: Interplay of delay and multiplexing, EPL 115(6), 60005 (2016)
https://doi.org/10.1209/0295-5075/115/60005
40 V. A. Maksimenko, V. V. Makarov, B. K. Bera, D. Ghosh, S. K. Dana, M. V. Goremyko, N. S. Frolov, A. A. Koronovskii, and A. E. Hramov, Excitation and suppression of chimera states by multiplexing, Phys. Rev. E 94(5), 052205 (2016)
https://doi.org/10.1103/PhysRevE.94.052205
41 Q. Dai, Q. Liu, H. Cheng, H. Li, and J. Yang, Chimera states in a bipartite network of phase oscillators, Nonlinear Dyn. 92(2), 741 (2018)
https://doi.org/10.1007/s11071-018-4087-3
42 Z. Wu, H. Cheng, Y. Feng, H. Li, Q. Dai, and J. Yang, Chimera states in bipartite networks of FitzHugh–Nagumo oscillators, Front. Phys. 13(2), 130503 (2018)
https://doi.org/10.1007/s11467-017-0737-z
43 Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, Berlin: Springer-Verlag, 1984
https://doi.org/10.1007/978-3-642-69689-3
44 J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
45 E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)
https://doi.org/10.1063/1.2930766
46 O. E. Omel’chenko, Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators, Nonlinearity 26(9), 2469 (2013)
https://doi.org/10.1088/0951-7715/26/9/2469
47 M. Wolfrum and O. E. Omel’chenko, Chimera states are chaotic transients, Phys. Rev. E 84(1), 015201 (2011)
https://doi.org/10.1103/PhysRevE.84.015201
48 B. Pietras, N. Deschle, and A. Daffertshofer, Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case, Phys. Rev. E 94, 052211 (2011)
https://doi.org/10.1103/PhysRevE.94.052211
[1] Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li, Jun-Zhong Yang. Chimera dynamics in nonlocally coupled moving phase oscillators[J]. Front. Phys. , 2019, 14(4): 43605-.
[2] Zhi-Min Wu, Hong-Yan Cheng, Yuee Feng, Hai-Hong Li, Qiong-Lin Dai, Jun-Zhong Yang. Chimera states in bipartite networks of FitzHugh–Nagumo oscillators[J]. Front. Phys. , 2018, 13(2): 130503-.
[3] Xiao-Wen Li, Ran Bi, Yue-Xiang Sun, Shuo Zhang, Qian-Qian Song. Chimera states in Gaussian coupled map lattices[J]. Front. Phys. , 2018, 13(2): 130502-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed