Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 130503    https://doi.org/10.1007/s11467-017-0737-z
RESEARCH ARTICLE
Chimera states in bipartite networks of FitzHugh–Nagumo oscillators
Zhi-Min Wu1, Hong-Yan Cheng1(), Yuee Feng2, Hai-Hong Li1, Qiong-Lin Dai1, Jun-Zhong Yang1()
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Basic Education Department, Jiangsu Aviation Technical College, Zhenjiang 212134, China
 Download: PDF(4296 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh–Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength–coupling radius plane, which show strong multistability of chimera states, are explored.

Keywords chimera states      bipartite networks      FitzHugh–Nagumo oscillators     
Corresponding Author(s): Hong-Yan Cheng,Jun-Zhong Yang   
Issue Date: 20 December 2017
 Cite this article:   
Zhi-Min Wu,Hong-Yan Cheng,Yuee Feng, et al. Chimera states in bipartite networks of FitzHugh–Nagumo oscillators[J]. Front. Phys. , 2018, 13(2): 130503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0737-z
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/130503
1 Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002), arXiv: cond-mat/0210694
2 D. Tanaka and Y. Kuramoto, Complex Ginzburg- Landau equation with nonlocal coupling, Phys. Rev. E 68(2), 026219 (2003)
https://doi.org/10.1103/PhysRevE.68.026219
3 S. I. Shima and Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E 69(3), 036213 (2004)
https://doi.org/10.1103/PhysRevE.69.036213
4 D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
5 D. M. Abrams and S. H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators, Int. J. Bifurcat. Chaos 16(01), 21 (2006)
https://doi.org/10.1142/S0218127406014551
6 N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
https://doi.org/10.1016/S0149-7634(00)00039-7
7 A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nat. Phys. 9(3), 191 (2013)
8 J. C. González-Avella, M. G. Cosenza, and M. San Miguel, Localized coherence in two interacting populations of social agents, Physica A 399, 24 (2014)
https://doi.org/10.1016/j.physa.2013.12.035
9 D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
https://doi.org/10.1103/PhysRevLett.101.084103
10 G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
https://doi.org/10.1103/PhysRevLett.100.144102
11 Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
12 C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569(2009)
https://doi.org/10.1016/j.physd.2009.04.012
13 C. H. Tian, X. Y. Zhang, Z. H. Wang, and Z. H. Liu, Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling, Front. Phys. 12(3), 128904 (2017)
https://doi.org/10.1007/s11467-017-0656-z
14 T. Bountis, V. G. Kanas, J. Hizanidis, and A. Bezerianos, Chimera states in a two–population network of coupled pendulum–like elements, Eur. Phys. J. Spec. Top. 223(4), 721 (2014)
https://doi.org/10.1140/epjst/e2014-02137-7
15 I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
https://doi.org/10.1103/PhysRevLett.106.234102
16 I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
https://doi.org/10.1103/PhysRevLett.110.224101
17 N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
https://doi.org/10.1103/PhysRevLett.117.014102
18 T. Isele, J. Hizanidis, A. Provata, and P. Hövel, Controlling chimera states: The influence of excitable units, Phys. Rev. E 93(2), 022217 (2016)
https://doi.org/10.1103/PhysRevE.93.022217
19 E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
https://doi.org/10.1103/PhysRevLett.104.044101
20 C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
https://doi.org/10.1103/PhysRevLett.111.134101
21 M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)
https://doi.org/10.1103/PhysRevLett.110.094102
22 M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)
https://doi.org/10.1103/PhysRevE.91.022909
23 Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
https://doi.org/10.1103/PhysRevE.89.022914
24 N. Yao, Z. G. Huang, Y. C. Lai, and Z. G. Zheng, Robustness of chimera states in complex dynamical systems, Sci. Rep. 3(1), 3522 (2013)
https://doi.org/10.1038/srep03522
25 B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, EPL 118(1), 10001 (2017)
https://doi.org/10.1209/0295-5075/118/10001
26 S. Ghosh, A. Kumar, A. Zakharova, and S. Jalan, Birth and death of chimera: Interplay of delay and multiplexing, EPL 115(6), 60005 (2016)
https://doi.org/10.1209/0295-5075/115/60005
27 V. A. Maksimenko, V. V. Makarov, B. K. Bera, D. Ghosh, S. K. Dana, M. V. Goremyko, N. S. Frolov, A. A. Koronovskii, and A. E. Hramov, Excitation and suppression of chimera states by multiplexing, Phys. Rev. E 94(5), 052205 (2016)
https://doi.org/10.1103/PhysRevE.94.052205
28 S. Majhi, M. Perc, and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep. 6(1), 39033 (2016)
https://doi.org/10.1038/srep39033
29 S. Majhi, M. Perc, and D. Ghosh, Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos 27(7), 073109 (2017)
https://doi.org/10.1063/1.4993836
30 S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
https://doi.org/10.1038/s41598-017-02409-5
[1] Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras[J]. Front. Phys. , 2020, 15(6): 62501-.
[2] Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li, Jun-Zhong Yang. Chimera dynamics in nonlocally coupled moving phase oscillators[J]. Front. Phys. , 2019, 14(4): 43605-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed