|
|
Chimera dynamics in nonlocally coupled moving phase oscillators |
Wen-Hao Wang, Qiong-Lin Dai, Hong-Yan Cheng, Hai-Hong Li( ), Jun-Zhong Yang( ) |
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled dynamical units, prevail in a variety of systems. However, the interaction structures among oscillators are static in most of studies on chimera state. In this work, we consider a population of agents. Each agent carries a phase oscillator. We assume that agents perform Brownian motions on a ring and interact with each other with a kernel function dependent on the distance between them. When agents are motionless, the model allows for several dynamical states including two different chimera states (the type-I and the type-II chimeras). The movement of agents changes the relative positions among them and produces perpetual noise to impact on the model dynamics. We find that the response of the coupled phase oscillators to the movement of agents depends on both the phase lag α, determining the stabilities of chimera states, and the agent mobility D. For low mobility, the synchronous state transits to the type-I chimera state for α close to π/2 and attracts other initial states otherwise. For intermediate mobility, the coupled oscillators randomly jump among different dynamical states and the jump dynamics depends on α. We investigate the statistical properties in these different dynamical regimes and present the scaling laws between the transient time and the mobility for low mobility and relations between the mean lifetimes of different dynamical states and the mobility for intermediate mobility.
|
Keywords
chimera states
Brownian motion
nonlocal coupling
phase oscillators
|
Corresponding Author(s):
Hai-Hong Li,Jun-Zhong Yang
|
Issue Date: 27 June 2019
|
|
1 |
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
|
2 |
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
|
3 |
C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569 (2009)
https://doi.org/10.1016/j.physd.2009.04.012
|
4 |
A. E. Motter, Spontaneous synchrony breaking, Nat. Phys. 6(3), 164 (2010)
https://doi.org/10.1038/nphys1609
|
5 |
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, EPL 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
|
6 |
Z. Wu, H. Cheng, Y. Feng, H. Li, Q. Dai, and J. Yang, Chimera states in bipartite networks of FitzHugh– Nagumo oscillators, Front. Phys. 13(2), 130503 (2018)
https://doi.org/10.1007/s11467-017-0737-z
|
7 |
E. A. Martens, S. Thutupalli, A. Fourri’ere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
https://doi.org/10.1073/pnas.1302880110
|
8 |
M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
https://doi.org/10.1038/nphys2371
|
9 |
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
https://doi.org/10.1038/nphys2372
|
10 |
H. Cheng, Q. Dai, N. Wu, H. Li, and J. Yang, Chimera states in nonlocally coupled phase oscillators with biharmonic interaction, Commun. Nonlinear Sci. Numer. Simul. 56, 1 (2018)
https://doi.org/10.1016/j.cnsns.2017.07.015
|
11 |
X. Li, R. Bi, Y. Sun, S. Zhang, and Q. Song, chimera states in Gaussian coupled map lattices, Front. Phys. 13(2), 130502 (2018)
https://doi.org/10.1007/s11467-017-0729-z
|
12 |
H. Xu, G. Wang, L. Huang, and Y. Lai, Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera, Phys. Rev. Lett. 120(12), 124101 (2018)
https://doi.org/10.1103/PhysRevLett.120.124101
|
13 |
I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
https://doi.org/10.1103/PhysRevLett.106.234102
|
14 |
I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimeras, Chaos 25(8), 083104 (2015)
https://doi.org/10.1063/1.4927829
|
15 |
I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
https://doi.org/10.1103/PhysRevLett.110.224101
|
16 |
J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models, Int. J. Bifurcat. Chaos 24(03), 1450030 (2014)
https://doi.org/10.1142/S0218127414500308
|
17 |
H. Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E 73(3), 031907 (2006)
https://doi.org/10.1103/PhysRevE.73.031907
|
18 |
S. Olmi, E. A. Martens, S. Thutupalli, and A. Torcini, Intermittent chaotic chimeras for coupled rotators, Phys. Rev. E 92, 030901(R) (2015)
https://doi.org/10.1103/PhysRevE.92.030901
|
19 |
A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 112(14), 144103 (2014)
https://doi.org/10.1103/PhysRevLett.112.144103
|
20 |
G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett. 112(14), 144101 (2014)
https://doi.org/10.1103/PhysRevLett.112.144101
|
21 |
V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M. Lakshmanan, Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E 90(6), 062913 (2014)
https://doi.org/10.1103/PhysRevE.90.062913
|
22 |
K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E 91(5), 052915 (2015)
https://doi.org/10.1103/PhysRevE.91.052915
|
23 |
C. R. Laing, Chimeras in networks with purely local coupling, Phys. Rev. E 92, 050904(R) (2015)
https://doi.org/10.1103/PhysRevE.92.050904
|
24 |
B. K. Bera, D. Ghosh, and M. Lakshmanan, Chimera states in bursting neurons, Phys. Rev. E 93(1), 012205 (2016)
https://doi.org/10.1103/PhysRevE.93.012205
|
25 |
E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
https://doi.org/10.1103/PhysRevLett.104.044101
|
26 |
C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
https://doi.org/10.1103/PhysRevLett.111.134101
|
27 |
M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)
https://doi.org/10.1103/PhysRevLett.110.094102
|
28 |
M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)
https://doi.org/10.1103/PhysRevE.91.022909
|
29 |
Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
https://doi.org/10.1103/PhysRevE.89.022914
|
30 |
X. Jiang and D. M. Abrams, Symmetry-broken states on networks of coupled oscillators, Phys. Rev. E 93(5), 052202 (2016)
https://doi.org/10.1103/PhysRevE.93.052202
|
31 |
N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
https://doi.org/10.1103/PhysRevLett.117.014102
|
32 |
Q. Dai, M. Zhang, H. Cheng, H. Li, F. Xie, and J. Yang, From collective oscillation to chimera state in a nonlocally coupled excitable system, Nonlinear Dyn. 91(3), 1723 (2018)
https://doi.org/10.1007/s11071-017-3977-0
|
33 |
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
https://doi.org/10.1103/PhysRevLett.119.084101
|
34 |
Q. Dai, K. Yang, H. Cheng, H. Li, F. Xie, and J. Yang, Chimera states in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras, arXiv: 1808.03220v1 (2018)
|
35 |
M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Disturbances in a power transmission system, Phys. Rev. E 61(5), 4877 (2000)
https://doi.org/10.1103/PhysRevE.61.4877
|
36 |
R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95(1), 215 (2007)
https://doi.org/10.1109/JPROC.2006.887293
|
37 |
J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, and A. L. Barabasi, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. USA 104(18), 7332 (2007)
https://doi.org/10.1073/pnas.0610245104
|
38 |
S. Majhi and D. Ghosh, Amplitude death and resurgence of oscillation in networks of mobile oscillators, EPL 118(4), 40002 (2017)
https://doi.org/10.1209/0295-5075/118/40002
|
39 |
C. Shen, H. Chen, and Z. Hou, Mobility-enhanced signal response in metapopulation networks of coupled oscillators, EPL 102(3), 38004 (2013)
https://doi.org/10.1209/0295-5075/102/38004
|
40 |
M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2018)
https://doi.org/10.1103/PhysRevLett.100.044102
|
41 |
J. Gómez-Gardeñes, V. Nicosia, R. Sinatra, and V. Latora, Motion-induced synchronization in metapopulations of mobile agents, Phys. Rev. E 87(3), 032814 (2013)
https://doi.org/10.1103/PhysRevE.87.032814
|
42 |
Y. Eom, S. Boccaletti, and G. Caldarelli, Concurrent enhancement of percolation and synchronization in adaptive networks, Sci. Rep. 6(1), 27111 (2016)
https://doi.org/10.1038/srep27111
|
43 |
N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83, 025101(R) (2011)
https://doi.org/10.1103/PhysRevE.83.025101
|
44 |
L. Prignano, O. Sagarra, and A. Díaz-Guilera, Tuning Synchronization of Integrate-and-Fire Oscillators through Mobility, Phys. Rev. Lett. 110(11), 114101 (2013)
https://doi.org/10.1103/PhysRevLett.110.114101
|
45 |
A. Beardo, L. Prignano, O. Sagarra, and A. Díaz-Guilera, Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization, Phys. Rev. E 96(6), 062306 (2017)
https://doi.org/10.1103/PhysRevE.96.062306
|
46 |
G. Petrungaro, K. Uriu, and L. G. Morelli, Mobilityinduced persistent chimera states, Phys. Rev. E 96(6), 062210 (2017)
https://doi.org/10.1103/PhysRevE.96.062210
|
47 |
M. Wolfrum and O. E. Omelchenko, Chimera states are chaotic transients. Phys. Rev. E 84, 015201(R) (2011)
https://doi.org/10.1103/PhysRevE.84.015201
|
48 |
P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, How basin stability complements the linear-stability paradigm, Nat. Phys. 9(2), 89 (2013)
https://doi.org/10.1038/nphys2516
|
49 |
K. Uriu, S. Ares, A. C. Oates, and L. G. Morelli, Dynamics of mobile coupled phase oscillators, Phys. Rev. E 87(3), 032911 (2013)
https://doi.org/10.1103/PhysRevE.87.032911
|
50 |
F. Peruani, E. M. Nicola, and L. G. Morelli, Mobility induces global synchronization of oscillators in periodic extended systems, New J. Phys. 12(9), 093029 (2010)
https://doi.org/10.1088/1367-2630/12/9/093029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|