|
|
Joint multifractal analysis based on wavelet leaders |
Zhi-Qiang Jiang1,2,3( ),Yan-Hong Yang1,2,3,Gang-Jin Wang3,4( ),Wei-Xing Zhou1,2,5( ) |
1. School of Business, East China University of Science and Technology, Shanghai 200237, China 2. Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China 3. Department of Physics and Center for Polymer Studies, Boston University, Boston, MA 02215, USA 4. Business School and Center of Finance and Investment Management, Hunan University, Changsha 410082, China 5. Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract Mutually interacting components form complex systems and these components usually have longrange cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
|
Keywords
joint multifractal analysis
wavelet leader
binomial measure
bivariate fractional Brownian motion
econophysics
online world
|
Corresponding Author(s):
Zhi-Qiang Jiang,Gang-Jin Wang,Wei-Xing Zhou
|
Issue Date: 17 March 2017
|
|
1 |
B. Podobnik and H. E. Stanley, Detrended crosscorrelation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett. 100(8), 084102 (2008)
https://doi.org/10.1103/PhysRevLett.100.084102
|
2 |
P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. A 97(6), 227 (1983)
https://doi.org/10.1016/0375-9601(83)90753-3
|
3 |
P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D 9(1–2), 189 (1983)
https://doi.org/10.1016/0167-2789(83)90298-1
|
4 |
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33(2), 1141 (1986)
https://doi.org/10.1103/PhysRevA.33.1141
|
5 |
A. N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13(01), 82 (1962)
https://doi.org/10.1017/S0022112062000518
|
6 |
F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flows, J. Fluid Mech. 140, 63 (1984)
https://doi.org/10.1017/S0022112084000513
|
7 |
A. Castro e Silva and J. G. Moreira, Roughness exponents to calculate multi-affine fractal exponents, Physica A 235(3–4), 327 (1997)
|
8 |
R. O. Weber and P. Talkner, Spectra and correlations of climate data from days to decades, J. Geophys. Res. 106(D17), 20131 (2001)
https://doi.org/10.1029/2001JD000548
|
9 |
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny- Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316(1–4), 87 (2002)
https://doi.org/10.1016/S0378-4371(02)01383-3
|
10 |
E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27(2), 197 (2002)
https://doi.org/10.1140/epjb/e20020150
|
11 |
A. Carbone, G. Castelli, and H. E. Stanley, Timedependent Hurst exponent in financial time series, Physica A 344(1–2), 267 (2004)
https://doi.org/10.1016/j.physa.2004.06.130
|
12 |
A. Carbone, G. Castelli, and H. E. Stanley, Analysis of clusters formed by the moving average of a long-range correlated time series, Phys. Rev. E 69(2), 026105 (2004)
https://doi.org/10.1103/PhysRevE.69.026105
|
13 |
G. F. Gu and W. X. Zhou, Detrending moving average algorithm for multifractals, Phys. Rev. E 82(1), 011136 (2010)
https://doi.org/10.1103/PhysRevE.82.011136
|
14 |
C. Meneveau, K. R. Sreenivasan, P. Kailasnath, and M. S. Fan, Joint multifractal measures: Theory and applications to turbulence, Phys. Rev. A 41(2), 894 (1990)
https://doi.org/10.1103/PhysRevA.41.894
|
15 |
W. J. Xie, Z. Q. Jiang, G. F. Gu, X. Xiong, and W. X. Zhou, Joint multifractal analysis based on the partition function approach: Analytical analysis, numerical simulation and empirical application, New J. Phys. 17(10), 103020 (2015)
https://doi.org/10.1088/1367-2630/17/10/103020
|
16 |
J. Wang, P. J. Shang, and W. J. Ge, Multifractal crosscorrelation analysis based on statistical moments, Fractals 20(03n04), 271 (2012)
|
17 |
L. Kristoufek, Multifractal height cross-correlation analysis: A new method for analyzing long-range crosscorrelations, EPL 95(6), 68001 (2011)
https://doi.org/10.1209/0295-5075/95/68001
|
18 |
W. X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Phys. Rev. E 77(6), 066211 (2008)
https://doi.org/10.1103/PhysRevE.77.066211
|
19 |
A. Carbone and G. Castelli, Noise in complex systems and stochastic dynamics, Proc. SPIE 5114, 406 (2003)
|
20 |
S. Arianos and A. Carbone, Detrending moving average algorithm: A closed-form approximation of the scaling law, Physica A 382(1), 9 (2007)
https://doi.org/10.1016/j.physa.2007.02.074
|
21 |
A. Carbone, Algorithm to estimate the Hurst exponent of high-dimensional fractals, Phys. Rev. E 76(5), 056703 (2007)
https://doi.org/10.1103/PhysRevE.76.056703
|
22 |
A. Carbone and K. Kiyono, Detrending moving average algorithm: Frequency response and scaling performances, Phys. Rev. E 93(6), 063309 (2016)
https://doi.org/10.1103/PhysRevE.93.063309
|
23 |
Y. Tsujimoto, Y. Miki, S. Shimatani, and K. Kiyono, Fast algorithm for scaling analysis with higher-order detrending moving average method, Phys. Rev. E 93(5), 053304 (2016)
https://doi.org/10.1103/PhysRevE.93.053304
|
24 |
K. Kiyono and Y. Tsujimoto, Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses, Phys. Rev. E 94(1), 012111 (2016)
https://doi.org/10.1103/PhysRevE.94.012111
|
25 |
Z. Q. Jiang and W. X. Zhou, Multifractal detrending moving-average cross-correlation analysis, Phys. Rev. E 84(1), 016106 (2011)
https://doi.org/10.1103/PhysRevE.84.016106
|
26 |
P. Oświe¸cimk, S. Drożdż, M. Forczek, S. Jadach, and J. Kwapień, Detrended cross-correlation analysis consistently extended to multifractality, Phys. Rev. E 89(2), 023305 (2014)
https://doi.org/10.1103/PhysRevE.89.023305
|
27 |
J. Kwapień, P. Oświe¸cimka, and S. Drożdż, Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations, Phys. Rev. E 92(5), 052815 (2015)
https://doi.org/10.1103/PhysRevE.92.052815
|
28 |
X. Y. Qian, Y. M. Liu, Z. Q. Jiang, B. Podobnik, W. X. Zhou, and H. E. Stanley, Detrended partial crosscorrelation analysis of two nonstationary time series influenced by common external forces, Phys. Rev. E 91(6), 062816 (2015)
https://doi.org/10.1103/PhysRevE.91.062816
|
29 |
Y. D. Wang, Y. Wei, and C. F. Wu, Cross-correlations between Chinese A-share and B-share markets, Physica A 389(23), 5468 (2010)
https://doi.org/10.1016/j.physa.2010.08.029
|
30 |
Y. D. Wang, Y. Wei, and C. F. Wu, Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil, Physica A 390(5), 864 (2011)
https://doi.org/10.1016/j.physa.2010.11.017
|
31 |
G. J. Wang and C. Xie, Cross-correlations between the CSI 300 spot and futures markets, Nonlinear Dyn. 73(3), 1687 (2013)
https://doi.org/10.1007/s11071-013-0895-7
|
32 |
G. J. Wang and C. Xie, Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket, Physica A 392(6), 1418 (2013)
https://doi.org/10.1016/j.physa.2012.11.035
|
33 |
F. Ma, Y. Wei, and D. S. Huang, Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets, Physica A 392(7), 1659 (2013)
https://doi.org/10.1016/j.physa.2012.12.010
|
34 |
D. H. Wang, Y. Y. Suo, X. W. Yu, and M. Lei, Price– volume cross-correlation analysis of CSI300 index futures, Physica A 392(5), 1172 (2013)
https://doi.org/10.1016/j.physa.2012.11.031
|
35 |
G. J. Wang, C. Xie, L. Y. He, and S. Chen, Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales, Physica A 405, 70 (2014)
https://doi.org/10.1016/j.physa.2014.03.010
|
36 |
Y. Zhou and S. Chen, Cross-correlation analysis between Chinese TF contracts and treasury ETF based on high-frequency data, Physica A 443, 117 (2016)
https://doi.org/10.1016/j.physa.2015.09.078
|
37 |
M. Holschneider, On the wavelet transformation of fractal objects, J. Stat. Phys. 50(5–6), 963 (1988)
https://doi.org/10.1007/BF01019149
|
38 |
A. Arnéodo, G. Grasseau, and M. Holschneider, Wavelet transform of multifractals, Phys. Rev. Lett. 61(20), 2281 (1988)
https://doi.org/10.1103/PhysRevLett.61.2281
|
39 |
J. F. Muzy, E. Bacry, and A. Arnéodo, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett. 67(25), 3515 (1991)
https://doi.org/10.1103/PhysRevLett.67.3515
|
40 |
Z. Q. Jiang, W. X. Zhou, and H. E. Stanley, Multifractal cross wavelet analysis, arXiv: 1610.09519 (2016)
|
41 |
L. Hudgins, C. A. Friehe, and M. E. Mayer, Wavelet transforms and atmopsheric turbulence, Phys. Rev. Lett. 71(20), 3279 (1993)
https://doi.org/10.1103/PhysRevLett.71.3279
|
42 |
D. Maraun and J. Kurths, Cross wavelet analysis: Significance testing and pitfalls, Nonlinear Process. Geophys. 11(4), 505 (2004)
https://doi.org/10.5194/npg-11-505-2004
|
43 |
L. Aguiar-Conraria and M. J. Soares, The continuous wavelet transform: Moving beyond uni- and bivariate analysis, J. Econ. Surv. 28(2), 344 (2014)
https://doi.org/10.1111/joes.12012
|
44 |
B. Lashermes, S. G. Roux, P. Abry, and S. Jaffard, Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders, Eur. Phys. J. B 61(2), 201 (2008)
https://doi.org/10.1140/epjb/e2008-00058-4
|
45 |
E. Serrano and A. Figliola, Wavelet leaders: A new method to estimate the multifractal singularity spectra, Physica A 388(14), 2793 (2009)
https://doi.org/10.1016/j.physa.2009.03.043
|
46 |
H. Wendt, S. G. Roux, S. Jaffard, and P. Abry, Wavelet leaders and bootstrap for multifractal analysis of images, Signal Process. 89(6), 1100 (2009)
https://doi.org/10.1016/j.sigpro.2008.12.015
|
47 |
A. B. Chhabra and R. V. Jensen, Direct determination of the f(a) singularity spectrum, Phys. Rev. Lett. 62(12), 1327 (1989)
https://doi.org/10.1103/PhysRevLett.62.1327
|
48 |
C. Meneveau and K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59(13), 1424 (1987)
https://doi.org/10.1103/PhysRevLett.59.1424
|
49 |
F. Lavancier, A. Philippe, and D. Surgailis, Covariance function of vector self-similar processes, Stat. Probab. Lett. 79(23), 2415 (2009)
https://doi.org/10.1016/j.spl.2009.08.015
|
50 |
J.-F. Coeurjolly, P. Amblard, and S. Achard, On multivariate fractional Brownian motion and multivariate fractional Gaussian noise, Eur. Signal Process. Conf. 18, 1567 (2010)
|
51 |
P. O. Amblard, J. F. Coeurjolly, F. Lavancier, and A. Philippe, Basic properties of the multivariate fractional Brownian motion, Bull. Soc. Math. France, Sémin. Congr. 28, 65 (2013)
|
52 |
Z. Q. Jiang and W. X. Zhou, Scale invariant distribution and multifractality of volatility multipliers in stock markets, Physica A 381, 343 (2007)
https://doi.org/10.1016/j.physa.2007.03.015
|
53 |
Z. Q. Jiang, W. J. Xie, and W. X. Zhou, Testing the weak-form efficiency of the WTI crude oil futures market, Physica A 405, 235 (2014)
https://doi.org/10.1016/j.physa.2014.02.042
|
54 |
Z. Q. Jiang, F. Ren, G. F. Gu, Q. Z. Tan, and W. X. Zhou, Statistical properties of online avatar numbers in a massive multiplayer online role-playing game, Physica A 389(4), 807 (2010)
https://doi.org/10.1016/j.physa.2009.10.028
|
55 |
P. Oświe¸cimk, J. Kwapień, and S. Drożdż, Wavelet versus detrended fluctuation analysis of multifractal structures, Phys. Rev. E 74(1), 016103 (2006)
https://doi.org/10.1103/PhysRevE.74.016103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|