Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 136104    https://doi.org/10.1007/s11467-018-0774-2
RESEARCH ARTICLE
High-pressure polymorphs of LiPN2: A first-principles study
Jian Lv1, Xin Yang2, Dan Xu2(), Yu-Xin Huang3, Hong-Bo Wang2(), Hui Wang2
1. College of Materials Science and Engineering, Jilin University, Changchun 130012, China
2. State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
3. College of Basic Science, Changchun University of Technology, Changchun 130012, China
 Download: PDF(10843 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, high-pressure phase behavior of LiPN2 within 0–300 GPa was studied by using an unbiased structure searching method in combination with first-principles calculations. Three pressureinduced phase transitions were predicted, as tI16→hR4→cF64→oP8 at 44, 136, and 259 GPa, respectively. The six-fold coordination environments were found for all high-pressure polymorphs, which are substantially different from the four-fold coordination environments observed in the tI16 structure. The hR4 and cF64 structures consist of close-packed PN6 and LiN6 octahedra connected by edge-sharing, whereas the oP8 structure is built up from edge- and face-sharing PN6 and LiN6 octahedra with N lying in the center of the trigonal prisms. The electronic structure analysis reveals that LiPN2 is a semiconductor within the pressure range studied and P-N and Li-N bonds are covalent and ionic, respectively. The results obtained are expected to provide insight and guidance for future experiments on LiPN2 and other alkali metal nitridophosphates.

Keywords lithium nitridophosphates      phase transition      high pressure      first principles     
Corresponding Author(s): Dan Xu,Hong-Bo Wang   
Issue Date: 24 April 2018
 Cite this article:   
Jian Lv,Xin Yang,Dan Xu, et al. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0774-2
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/136104
1 E. M. Bertschler, R. Niklaus, and W. Schnick, Li12P3N9 with non-condensed [P3N9]12− rings and its highpressure polymorph Li4PN3 with infinite chains of PN4− tetrahedra, Chemistry 23(40), 9592 (2017)
https://doi.org/10.1002/chem.201700979
2 A. Al-Qawasmeh and N. A. W. Holzwarth, Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials, J. Power Sources 364, 410 (2017)
https://doi.org/10.1016/j.jpowsour.2017.08.025
3 W. Schnick and J. Luecke, Lithium ion conductivity of LiPN2 and Li7PN4, Solid State Ion. 38(3–4), 271 (1990)
https://doi.org/10.1016/0167-2738(90)90432-Q
4 E. M. Bertschler, C. Dietrich, J. Janek, and W. Schnick, Li18P6N16 — A lithium nitridophosphate with unprecedented tricyclic [P6N16]18− Ions, Chemistry 23(9), 2185 (2017)
https://doi.org/10.1002/chem.201605316
5 W. Schnick and U. Berger, Li10P4N10 — A lithium phosphorus(V) nitride containing the new complex anion [P4N10]10−, Angew. Chem. Int. Ed. Engl. 30(7), 830 (1991)
https://doi.org/10.1002/anie.199108301
6 R. Marchand, P. L’Haridon, and Y. Laurent, Etude cristallochimique de LiPN2: Une structure derivée de la cristobalite, J. Solid State Chem. 43(2), 126 (1982)
https://doi.org/10.1016/0022-4596(82)90221-3
7 Y. M. Basalaev, Y. N. Zhuravlev, V. S. Permina, and A. S. Poplavnoi, LiPN2 and NaPN2 crystals: Structural features and chemical bonding, J. Struct. Chem. 48(6), 996 (2007)
https://doi.org/10.1007/s10947-007-0162-1
8 A. V. Kosobutsky, Lattice dynamics and elastic properties of LiPN2 and NaPN2, J. Phys. Condens. Matter 21(40), 405404 (2009)
https://doi.org/10.1088/0953-8984/21/40/405404
9 D. Baumann and W. Schnick, Pentacoordinate phosphorus in a high-pressure polymorph of phosphorus nitride imide P4N6(NH), Angew. Chem. Int. Ed. 53(52), 14490 (2014)
https://doi.org/10.1002/anie.201406086
10 F. J. Pucher, S. R. Römer, F. W. Karau, and W. Schnick, Phenakite-type BeP2N4 — A possible precursor for a new hard spinel-type material, Chemistry 16(24), 7208 (2010)
https://doi.org/10.1002/chem.201000153
11 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
12 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
13 Y. Wang and Y. Ma, Perspective: Crystal structure prediction at high pressures, J. Chem. Phys. 140(4), 040901 (2014)
https://doi.org/10.1063/1.4861966
14 Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)
https://doi.org/10.1088/0953-8984/27/20/203203
15 H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112(Part B), 406 (2016)
16 L. Zhang, Y. Wang, J. Lv, and Y. Ma, Materials discovery at high pressures, Nat. Rev. Mater. 2(4), 17005 (2017)
https://doi.org/10.1038/natrevmats.2017.5
17 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
18 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
19 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
20 A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
21 S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)
https://doi.org/10.1002/jcc.24300
22 K. Momma and F. Izumi, VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44(6), 1272 (2011)
https://doi.org/10.1107/S0021889811038970
23 D. Xu and B. Li, Exotic high-pressure behavior of double nitride CuPN2 (unpublished)
24 R. W. G. Wyckoff, Crystal structure of high temperature cristobalite, Am. J. Sci. s 5–9(54), 448 (1925)
25 M. Råsander and M. A. Moram, Electronic structure of the high and low pressure polymorphs of MgSiN2, Mater. Res. Express 3(8), 085902 (2016)
https://doi.org/10.1088/2053-1591/3/8/085902
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[6] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[7] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[8] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[9] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[10] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[11] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[12] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[13] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[14] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[15] Zhen-Kun Wu,Peng Li,Yu-Zong Gu. Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media[J]. Front. Phys. , 2017, 12(5): 124203-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed