Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (5) : 124203    https://doi.org/10.1007/s11467-016-0613-2
RESEARCH ARTICLE
Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media
Zhen-Kun Wu,Peng Li,Yu-Zong Gu()
Institute of Microsystem Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
 Download: PDF(1345 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.

Keywords Airy beam      nonlocal nonlinear      phase transition      intensity distribution     
Corresponding Author(s): Yu-Zong Gu   
Issue Date: 17 October 2016
 Cite this article:   
Zhen-Kun Wu,Peng Li,Yu-Zong Gu. Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media[J]. Front. Phys. , 2017, 12(5): 124203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0613-2
https://academic.hep.com.cn/fop/EN/Y2017/V12/I5/124203
1 M. V. Berry and N. L. Balazs, Nonspreading wave packets, Am. J. Phys. 47(3), 264 (1979)
https://doi.org/10.1119/1.11855
2 G. A. Siviloglou and D. N. Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32(8), 979 (2007)
https://doi.org/10.1364/OL.32.000979
3 G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Observation of accelerating Airy beams, Phys. Rev. Lett. 99(21), 213901 (2007)
https://doi.org/10.1103/PhysRevLett.99.213901
4 J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Self-healing properties of optical Airy beams, Opt. Express 16(17), 12880 (2008)
https://doi.org/10.1364/OE.16.012880
5 T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nonlinear generation and manipulation of Airy beams, Nat. Photonics 3(7), 395 (2009)
https://doi.org/10.1038/nphoton.2009.95
6 A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, Airy-Bessel wave packets as versatile linear light bullets, Nat. Photonics 4(2), 103 (2010)
https://doi.org/10.1038/nphoton.2009.264
7 P. Zhang, J. Prakash, Z. Zhang, M. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, Trapping and guiding microparticles with morphing autofocusing Airy beams, Opt. Lett. 36(15), 2883 (2011)
https://doi.org/10.1364/OL.36.002883
8 P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Curved plasma channel generation using ultraintense Airy beams, Science 324(5924), 229 (2009)
https://doi.org/10.1126/science.1169544
9 J. Amako, D. Sawaki, and E. Fujii, Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics, J. Opt. Soc. Am. B 20(12), 2562 (2003)
https://doi.org/10.1364/JOSAB.20.002562
10 C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 12, 053010 (2010)
11 D. Abdollahpour, S. Suntsov, D. Papazoglou, and S. Tzortzakis, Spatiotemporal Airy light bullets in the linear and nonlinear regimes, Phys. Rev. Lett. 105(25), 253901 (2010)
https://doi.org/10.1103/PhysRevLett.105.253901
12 Y. Q. Zhang, M. R. BelićZ. K. Wu, H. B. Zheng, K. Q. Lu, Y. Y. Li, and Y. P. Zhang, Soliton pair generation in the interactions of Airy and nonlinear accelerating beams, Opt. Lett. 38(22), 4585 (2013)
https://doi.org/10.1364/OL.38.004585
13 Y. Q. Zhang, M. R. BelićH. B. Zheng, H. X. Chen, C. B. Li, Y. Y. Li, and Y. P. Zhang, Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media, Opt. Express 22(6), 7160 (2014)
https://doi.org/10.1364/OE.22.007160
14 Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, Analytical theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality, Phys. Rev. A 82, 013826 (2010)
https://doi.org/10.1103/PhysRevA.82.013826
15 W. Hu, T. Zhang, Q. Guo, L. Xuan, and S. Lan, Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals, Appl. Phys. Lett. 89, 071111 (2006)
https://doi.org/10.1063/1.2337268
16 R. Bekenstein and M. Segev, Self-accelerating optical beams in highly nonlocal nonlinear media, Opt. Express 19(24), 23706 (2011)
https://doi.org/10.1364/OE.19.023706
17 G. Q. Zhou, R. P. Chen, and G. Y. Ru, Propagation of an Airy beam in a strongly nonlocal nonlinear media, Laser. Phys. Lett. 11, 105001 (2014)
https://doi.org/10.1088/1612-2011/11/10/105001
18 R. Bekenstein, R. Schley, M. Mutzafi, C. Rotschild, and M. Segev, Optical simulations of gravitational effects in the Newton-Schrodinger system, Nat. Phys. 11, 872 (2015)
https://doi.org/10.1038/nphys3451
19 M. Shen, J. S. Gao, and L. J. Ge, Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media, Sci. Rep. 5, 9814 (2015)
https://doi.org/10.1038/srep09814
20 M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, Routing of anisotropic spatial solitons and modulational instability in liquid crystals, Nature 432(7018), 733 (2004)
https://doi.org/10.1038/nature03101
21 C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, Longrange interactions between optical solitons, Nat. Phys. 2(11), 769 (2006)
https://doi.org/10.1038/nphys445
22 J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, 2010
https://doi.org/10.1137/1.9780898719680
23 Y. Q. Zhang, M. R. BelićL. Zhang, W. P. Zhong, D. Y. Zhu, R. M. Wang, and Y. P. Zhang, Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential, Opt. Express 23(8), 10467 (2015)
https://doi.org/10.1364/OE.23.010467
24 F. Xiao, B. Li, M. Wang, W. Zhu, P. Zhang, S. Liu, M. Premaratne, and J. Zhao, Optical Bloch oscillations of an Airy beam in a photonic lattice with a linear transverse index gradient, Opt. Express 22(19), 22763 (2014)
https://doi.org/10.1364/OE.22.022763
25 Y. Q. Zhang, X. Liu, M. R. BelićW. P. Zhong, M. S. Petrović and Y. P. Zhang, Automatic Fourier transform and self-Fourier beams due to parabolic potential, Ann. Phys. 363, 305 (2015)
https://doi.org/10.1016/j.aop.2015.10.006
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[6] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[7] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[8] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[9] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[10] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[11] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[12] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[13] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[14] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[15] Zhen-Kun Wu, Hao Guo, Wei Wang, Yu-Zong Gu. Evolution of finite energy Airy beams in cubic-quintic atomic vapor system[J]. Front. Phys. , 2018, 13(1): 134201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed