|
|
Entanglement and excited-state quantum phase transition in an extended Dicke model |
Gui-Lei Zhu, Xin-You Lü( ), Shang-Wu Bin, Cai You, Ying Wu |
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We investigate the properties of entanglement and excited-state quantum phase transition (ESQPT) in a hybrid atom-optomechanical system in which an optomechanical quadratic interaction is introduced into a normal Dicke model. Interestingly, by preparing the ancillary mode in a coherent state, both the quantum entanglement and ESQPT can be realized in a relative weak-coupling condition. Moreover, the entanglement is immune to the A2 term, and a reversed trend of the entropy is obtained when the A2 term is included. Density of states (DoS) and Peres lattice are used to investigate ESQPTs. Compared to a normal Dicke model, the DoS enlarges exp(2rα) times if the ancillary mode is prepared in a coherent state. This work is an extension of the ground-state quantum phase transition, which may inspire further exploration of the quantum criticality in many-body systems.
|
Keywords
phase transition
Dicke model
|
Corresponding Author(s):
Xin-You Lü
|
Issue Date: 16 September 2019
|
|
1 |
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9780511622540
|
2 |
S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continuous quantum phase transitions, Rev. Mod. Phys. 69(1), 315 (1997)
https://doi.org/10.1103/RevModPhys.69.315
|
3 |
P. Cejnar, J. Jolie, and R. F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Rev. Mod. Phys. 82(3), 2155 (2010)
https://doi.org/10.1103/RevModPhys.82.2155
|
4 |
R. F. Casten and E. A. McCutchan, Quantum phase transitions and structural evolution in nuclei, J. Phys. G 34(7), R285 (2007)
https://doi.org/10.1088/0954-3899/34/7/R01
|
5 |
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a quantum phase transition, Nature 416(6881), 608 (2002)
https://doi.org/10.1038/416608a
|
6 |
J. Ma and X. Wang, Fisher information and spin squeezing in the Lipkin–Meshkov–Glick model, Phys. Rev. A 80(1), 012318 (2009)
https://doi.org/10.1103/PhysRevA.80.012318
|
7 |
T. L. Wang, L. N. Wu, W. Yang, G. R. Jin, N. Lambert, and F. Nori, Quantum Fisher information as a signature of the superradiant quantum phase transition, New J. Phys. 16(6), 063039 (2014)
https://doi.org/10.1088/1367-2630/16/6/063039
|
8 |
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
|
9 |
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a quantum phase transition, Nature 416(6881), 608 (2002)
https://doi.org/10.1038/416608a
|
10 |
P. Nataf and C. Ciuti, No-go theorem for superradiant quantum phase transitions in cavity QED and counterexample in circuit QED, Nat. Commun. 1(1), 72 (2010)
https://doi.org/10.1038/ncomms1069
|
11 |
J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, Are super-radiant phase transitions possible? Phys. Rev. A 17(4), 1454 (1978)
https://doi.org/10.1103/PhysRevA.17.1454
|
12 |
A. Vukics, T. Grieβer, and P. Domokos, Elimination of the A-square problem from cavity QED, Phys. Rev. Lett. 112(7), 073601 (2014)
https://doi.org/10.1103/PhysRevLett.112.073601
|
13 |
P. Cejnar and P. Stránský, Impact of quantum phase transitions on excited-level dynamics, Phys. Rev. E 78(3), 031130 (2008)
https://doi.org/10.1103/PhysRevE.78.031130
|
14 |
J. E. García-Ramos, P. Pérez-Fernández, and J. M. Arias, Excited-state quantum phase transitions in a two-fluid Lipkin model, Phys. Rev. C 95(5), 054326 (2017)
https://doi.org/10.1103/PhysRevC.95.054326
|
15 |
M. A. Caprio, P. Cejnar, and F. Iachello, Excited state quantum phase transitions in many-body systems, Ann. Phys. 323(5), 1106 (2008)
https://doi.org/10.1016/j.aop.2007.06.011
|
16 |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
|
17 |
M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D. Barrett, Realization of the Dicke model using cavity-assisted Raman transitions, Phys. Rev. Lett. 113(2), 020408 (2014)
https://doi.org/10.1103/PhysRevLett.113.020408
|
18 |
J. Klinder, H. Keler, M. Wolke, L. Mathey, and A. Hemmerich, Dynamical phase transition in the open Dicke model, Proc. Natl. Acad. Sci. USA 112(11), 3290 (2015)
https://doi.org/10.1073/pnas.1417132112
|
19 |
J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, Dressed collective qubit states and the Tavis–Cummings model in circuit QED, Phys. Rev. Lett. 103(8), 083601 (2009)
https://doi.org/10.1103/PhysRevLett.103.083601
|
20 |
D. Schneble, Y. Torii, M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, The onset of matter-wave amplification in a superradiant Bose–Einstein Condensate, Science 300(5618), 475 (2003)
https://doi.org/10.1126/science.1083171
|
21 |
M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, Superradiance of quantum dots, Nat. Phys. 3(2), 106 (2007)
https://doi.org/10.1038/nphys494
|
22 |
K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superuid gas in an optical cavity, Nature 464(7293), 1301 (2010)
https://doi.org/10.1038/nature09009
|
23 |
M. Greiner, O. Mandel, T. Esslinger, T. W. Haënsch, and I. Bloch, Collapse and revival of the matter wave field of a Bose–Einstein condensate, Nature 415, 39 (2002)
https://doi.org/10.1038/nature00968
|
24 |
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator, Phys. Rev. Lett. 113(2), 020503 (2014)
https://doi.org/10.1103/PhysRevLett.113.020503
|
25 |
S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, Phonon-induced spin–spin interactions in diamond nanostructures: Application to spin squeezing, Phys. Rev. Lett. 110(15), 156402 (2013)
https://doi.org/10.1103/PhysRevLett.110.156402
|
26 |
R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93(1), 99 (1954)
https://doi.org/10.1103/PhysRev.93.99
|
27 |
K. Hepp and E. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model, Ann. Phys. 76(2), 360 (1973)
https://doi.org/10.1016/0003-4916(73)90039-0
|
28 |
C. Emary and T. Brandes, Quantum chaos triggered by precursors of a quantum phase transition: The Dicke model, Phys. Rev. Lett. 90(4), 044101 (2003)
https://doi.org/10.1103/PhysRevLett.90.044101
|
29 |
C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67(6), 066203 (2003)
https://doi.org/10.1103/PhysRevE.67.066203
|
30 |
T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase transition, Phys. Rev. A 66(3), 032110 (2002)
https://doi.org/10.1103/PhysRevA.66.032110
|
31 |
N. Lambert, C. Emary, and T. Brandes, Entanglement and the phase transition in single-mode superradiance, Phys. Rev. Lett. 92(7), 073602 (2004)
https://doi.org/10.1103/PhysRevLett.92.073602
|
32 |
G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90(22), 227902 (2003)
https://doi.org/10.1103/PhysRevLett.90.227902
|
33 |
Q. H. Chen, Y. Y. Zhang, T. Liu, and K. L. Wang, Numerically exact solution to the finite-size Dicke model, Phys. Rev. A 78, 051801(R) (2008)
https://doi.org/10.1103/PhysRevA.78.051801
|
34 |
T. Liu, Y. Y. Zhang, Q. H. Chen, and K. L. Wang, Large-N scaling behavior of the ground-state energy, fidelity, and the order parameter in the Dicke model, Phys. Rev. A 80(2), 023810 (2009)
https://doi.org/10.1103/PhysRevA.80.023810
|
35 |
Y. Y. Zhang, X. Y. Chen, S. He, and Q. H. Chen, Analytical solutions and genuine multipartite entanglement of the three-qubit Dicke model, Phys. Rev. A 94(1), 012317 (2016)
https://doi.org/10.1103/PhysRevA.94.012317
|
36 |
P. Perez-Fernández, A. Relaño, J. M. Arias, P. Cejnar, J. Dukelsky, and J. E. García-Ramos, Excited-state phase transition and onset of chaos in quantum optical models, Phys. Rev. E 83(4), 046208 (2011)
https://doi.org/10.1103/PhysRevE.83.046208
|
37 |
P. Perez-Fernández and A. Relaño, from thermal to excited-state phase transition: The Dicke model, Phys. Rev. E 96(1), 012121 (2017)
https://doi.org/10.1103/PhysRevE.96.012121
|
38 |
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
|
39 |
X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602 (2015)
https://doi.org/10.1103/PhysRevLett.114.093602
|
40 |
J. Q. Liao and F. Nori, Photon blockade in quadratically coupled optomechanical systems, Phys. Rev. A 88(2), 023853 (2013)
https://doi.org/10.1103/PhysRevA.88.023853
|
41 |
J. Q. Liao and F. Nori, Single-photon quadratic optomechanics, Sci. Rep. 4(1), 6302 (2014)
https://doi.org/10.1038/srep06302
|
42 |
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
https://doi.org/10.1038/nature06715
|
43 |
J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
https://doi.org/10.1038/nphys1707
|
44 |
M. Bhattacharya, H. Uys, and P. Meystre, Optomechanical trapping and cooling of partially reflective mirrors, Phys. Rev. A 77(3), 033819 (2008)
https://doi.org/10.1103/PhysRevA.77.033819
|
45 |
E. J. Kim, J. R. Johansson, and F. Nori, Circuit analog of quadratic optomechanics, Phys. Rev. A 91(3), 033835 (2015)
https://doi.org/10.1103/PhysRevA.91.033835
|
46 |
H. K. Li, Y. C. Liu, X. Yi, C. L. Zou, X. X. Ren, and Y. F. Xiao, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Phys. Rev. A 85(5), 053832 (2012)
https://doi.org/10.1103/PhysRevA.85.053832
|
47 |
G. L. Zhu, X. Y. Lü, L. L. Wan, T. S. Yin, Q. Bin, and Y. Wu, Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime, Phys. Rev. A 97(3), 033830 (2018)
https://doi.org/10.1103/PhysRevA.97.033830
|
48 |
C. S. Muñoz, A. Lara, J. Puebla, and F. Nori, Hybrid systems for the generation of nonclassical mechanical states via quadratic interactions, Phys. Rev. Lett. 121(12), 123604 (2018)
https://doi.org/10.1103/PhysRevLett.121.123604
|
49 |
X. Y. Lü, L. L. Zheng, G. L. Zhu, and Y. Wu, Singlephoton-triggered quantum phase transition, Phys. Rev. Appl. 9(6), 064006 (2018)
https://doi.org/10.1103/PhysRevApplied.9.064006
|
50 |
X. Y. Lü, G. L. Zhu, L. L. Zheng, and Y. Wu, Entanglement and quantum superposition induced by a single photon, Phys. Rev. A 97(3), 033807 (2018)
https://doi.org/10.1103/PhysRevA.97.033807
|
51 |
G. L. Zhu, X. Y. Lü, L. L. Zheng, Z. M. Zhan, F. Nori, and Y. Wu, Single-photon-triggered quantum chaos, Phys. Rev. A 100, 023825 (2019)
https://doi.org/10.1103/PhysRevA.100.023825
|
52 |
S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature 460(7256), 724 (2009)
https://doi.org/10.1038/nature08171
|
53 |
M. Liu, S. Chesi, Z. J. Ying, X. Chen, H. G. Luo, and H. Q. Lin, Universal scaling and critical exponents of the anisotropic quantum Rabi model, Phys. Rev. Lett. 119(22), 220601 (2017)
https://doi.org/10.1103/PhysRevLett.119.220601
|
54 |
A. Altland and T. Brandes, Quantum chaos and effective thermalization, Phys. Rev. Lett. 108(7), 073601 (2012)
https://doi.org/10.1103/PhysRevLett.108.073601
|
55 |
F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Atomic coherent states in quantum optics, Phys. Rev. A 6(6), 2211 (1972)
https://doi.org/10.1103/PhysRevA.6.2211
|
56 |
R. J. Glauber and F. Haake, Superradiant pulses and directed angular momentum states, Phys. Rev. A 13(1), 357 (1976)
https://doi.org/10.1103/PhysRevA.13.357
|
57 |
M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and M. C. Nemes, Chaos in a spin-boson sytem: Classical analysis, Ann. Phys. 216(2), 291 (1992)
https://doi.org/10.1016/0003-4916(92)90178-O
|
58 |
J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Classical chaos in atom-field systems, Phys. Rev. E 94(2), 022209 (2016)
https://doi.org/10.1103/PhysRevE.94.022209
|
59 |
P. Stránský, M. Macek, and P. Cejnar, Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties, Ann. Phys. 345, 73 (2014)
https://doi.org/10.1016/j.aop.2014.03.006
|
60 |
M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems (I): Density of states and excited-state quantum phase transitions, Phys. Rev. A 89(3), 032101 (2014)
https://doi.org/10.1103/PhysRevA.89.032101
|
61 |
M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems (II): Chaos and regularity, Phys. Rev. A 89(3), 032102 (2014)
https://doi.org/10.1103/PhysRevA.89.032102
|
62 |
P. Perez-Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E. García-Ramos, and A. Relaño, Quantum quench influenced by an excited-state phase transition, Phys. Rev. A 83(3), 033802 (2011)
https://doi.org/10.1103/PhysRevA.83.033802
|
63 |
T. Brandes, Excited-state quantum phase transitions in Dicke superradiance models, Phys. Rev. E 88(3), 032133 (2013)
https://doi.org/10.1103/PhysRevE.88.032133
|
64 |
X. Y. Lü, W. M. Zhang, A. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)
https://doi.org/10.1038/srep02943
|
65 |
A. Peres, New conserved quantities and test for regular spectra, Phys. Rev. Lett. 53(18), 1711 (1984)
https://doi.org/10.1103/PhysRevLett.53.1711
|
66 |
D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature 444(7115), 75 (2006)
https://doi.org/10.1038/nature05231
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|