Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (5) : 52602    https://doi.org/10.1007/s11467-019-0921-4
RESEARCH ARTICLE
Entanglement and excited-state quantum phase transition in an extended Dicke model
Gui-Lei Zhu, Xin-You Lü(), Shang-Wu Bin, Cai You, Ying Wu
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(3816 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the properties of entanglement and excited-state quantum phase transition (ESQPT) in a hybrid atom-optomechanical system in which an optomechanical quadratic interaction is introduced into a normal Dicke model. Interestingly, by preparing the ancillary mode in a coherent state, both the quantum entanglement and ESQPT can be realized in a relative weak-coupling condition. Moreover, the entanglement is immune to the A2 term, and a reversed trend of the entropy is obtained when the A2 term is included. Density of states (DoS) and Peres lattice are used to investigate ESQPTs. Compared to a normal Dicke model, the DoS enlarges exp(2rα) times if the ancillary mode is prepared in a coherent state. This work is an extension of the ground-state quantum phase transition, which may inspire further exploration of the quantum criticality in many-body systems.

Keywords phase transition      Dicke model     
Corresponding Author(s): Xin-You Lü   
Issue Date: 16 September 2019
 Cite this article:   
Gui-Lei Zhu,Xin-You Lü,Shang-Wu Bin, et al. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0921-4
https://academic.hep.com.cn/fop/EN/Y2019/V14/I5/52602
1 S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9780511622540
2 S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continuous quantum phase transitions, Rev. Mod. Phys. 69(1), 315 (1997)
https://doi.org/10.1103/RevModPhys.69.315
3 P. Cejnar, J. Jolie, and R. F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Rev. Mod. Phys. 82(3), 2155 (2010)
https://doi.org/10.1103/RevModPhys.82.2155
4 R. F. Casten and E. A. McCutchan, Quantum phase transitions and structural evolution in nuclei, J. Phys. G 34(7), R285 (2007)
https://doi.org/10.1088/0954-3899/34/7/R01
5 A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a quantum phase transition, Nature 416(6881), 608 (2002)
https://doi.org/10.1038/416608a
6 J. Ma and X. Wang, Fisher information and spin squeezing in the Lipkin–Meshkov–Glick model, Phys. Rev. A 80(1), 012318 (2009)
https://doi.org/10.1103/PhysRevA.80.012318
7 T. L. Wang, L. N. Wu, W. Yang, G. R. Jin, N. Lambert, and F. Nori, Quantum Fisher information as a signature of the superradiant quantum phase transition, New J. Phys. 16(6), 063039 (2014)
https://doi.org/10.1088/1367-2630/16/6/063039
8 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
9 A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a quantum phase transition, Nature 416(6881), 608 (2002)
https://doi.org/10.1038/416608a
10 P. Nataf and C. Ciuti, No-go theorem for superradiant quantum phase transitions in cavity QED and counterexample in circuit QED, Nat. Commun. 1(1), 72 (2010)
https://doi.org/10.1038/ncomms1069
11 J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, Are super-radiant phase transitions possible? Phys. Rev. A 17(4), 1454 (1978)
https://doi.org/10.1103/PhysRevA.17.1454
12 A. Vukics, T. Grieβer, and P. Domokos, Elimination of the A-square problem from cavity QED, Phys. Rev. Lett. 112(7), 073601 (2014)
https://doi.org/10.1103/PhysRevLett.112.073601
13 P. Cejnar and P. Stránský, Impact of quantum phase transitions on excited-level dynamics, Phys. Rev. E 78(3), 031130 (2008)
https://doi.org/10.1103/PhysRevE.78.031130
14 J. E. García-Ramos, P. Pérez-Fernández, and J. M. Arias, Excited-state quantum phase transitions in a two-fluid Lipkin model, Phys. Rev. C 95(5), 054326 (2017)
https://doi.org/10.1103/PhysRevC.95.054326
15 M. A. Caprio, P. Cejnar, and F. Iachello, Excited state quantum phase transitions in many-body systems, Ann. Phys. 323(5), 1106 (2008)
https://doi.org/10.1016/j.aop.2007.06.011
16 Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
17 M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D. Barrett, Realization of the Dicke model using cavity-assisted Raman transitions, Phys. Rev. Lett. 113(2), 020408 (2014)
https://doi.org/10.1103/PhysRevLett.113.020408
18 J. Klinder, H. Keler, M. Wolke, L. Mathey, and A. Hemmerich, Dynamical phase transition in the open Dicke model, Proc. Natl. Acad. Sci. USA 112(11), 3290 (2015)
https://doi.org/10.1073/pnas.1417132112
19 J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, Dressed collective qubit states and the Tavis–Cummings model in circuit QED, Phys. Rev. Lett. 103(8), 083601 (2009)
https://doi.org/10.1103/PhysRevLett.103.083601
20 D. Schneble, Y. Torii, M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, The onset of matter-wave amplification in a superradiant Bose–Einstein Condensate, Science 300(5618), 475 (2003)
https://doi.org/10.1126/science.1083171
21 M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, Superradiance of quantum dots, Nat. Phys. 3(2), 106 (2007)
https://doi.org/10.1038/nphys494
22 K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superuid gas in an optical cavity, Nature 464(7293), 1301 (2010)
https://doi.org/10.1038/nature09009
23 M. Greiner, O. Mandel, T. Esslinger, T. W. Haënsch, and I. Bloch, Collapse and revival of the matter wave field of a Bose–Einstein condensate, Nature 415, 39 (2002)
https://doi.org/10.1038/nature00968
24 J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator, Phys. Rev. Lett. 113(2), 020503 (2014)
https://doi.org/10.1103/PhysRevLett.113.020503
25 S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, Phonon-induced spin–spin interactions in diamond nanostructures: Application to spin squeezing, Phys. Rev. Lett. 110(15), 156402 (2013)
https://doi.org/10.1103/PhysRevLett.110.156402
26 R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93(1), 99 (1954)
https://doi.org/10.1103/PhysRev.93.99
27 K. Hepp and E. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model, Ann. Phys. 76(2), 360 (1973)
https://doi.org/10.1016/0003-4916(73)90039-0
28 C. Emary and T. Brandes, Quantum chaos triggered by precursors of a quantum phase transition: The Dicke model, Phys. Rev. Lett. 90(4), 044101 (2003)
https://doi.org/10.1103/PhysRevLett.90.044101
29 C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67(6), 066203 (2003)
https://doi.org/10.1103/PhysRevE.67.066203
30 T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase transition, Phys. Rev. A 66(3), 032110 (2002)
https://doi.org/10.1103/PhysRevA.66.032110
31 N. Lambert, C. Emary, and T. Brandes, Entanglement and the phase transition in single-mode superradiance, Phys. Rev. Lett. 92(7), 073602 (2004)
https://doi.org/10.1103/PhysRevLett.92.073602
32 G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90(22), 227902 (2003)
https://doi.org/10.1103/PhysRevLett.90.227902
33 Q. H. Chen, Y. Y. Zhang, T. Liu, and K. L. Wang, Numerically exact solution to the finite-size Dicke model, Phys. Rev. A 78, 051801(R) (2008)
https://doi.org/10.1103/PhysRevA.78.051801
34 T. Liu, Y. Y. Zhang, Q. H. Chen, and K. L. Wang, Large-N scaling behavior of the ground-state energy, fidelity, and the order parameter in the Dicke model, Phys. Rev. A 80(2), 023810 (2009)
https://doi.org/10.1103/PhysRevA.80.023810
35 Y. Y. Zhang, X. Y. Chen, S. He, and Q. H. Chen, Analytical solutions and genuine multipartite entanglement of the three-qubit Dicke model, Phys. Rev. A 94(1), 012317 (2016)
https://doi.org/10.1103/PhysRevA.94.012317
36 P. Perez-Fernández, A. Relaño, J. M. Arias, P. Cejnar, J. Dukelsky, and J. E. García-Ramos, Excited-state phase transition and onset of chaos in quantum optical models, Phys. Rev. E 83(4), 046208 (2011)
https://doi.org/10.1103/PhysRevE.83.046208
37 P. Perez-Fernández and A. Relaño, from thermal to excited-state phase transition: The Dicke model, Phys. Rev. E 96(1), 012121 (2017)
https://doi.org/10.1103/PhysRevE.96.012121
38 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
39 X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602 (2015)
https://doi.org/10.1103/PhysRevLett.114.093602
40 J. Q. Liao and F. Nori, Photon blockade in quadratically coupled optomechanical systems, Phys. Rev. A 88(2), 023853 (2013)
https://doi.org/10.1103/PhysRevA.88.023853
41 J. Q. Liao and F. Nori, Single-photon quadratic optomechanics, Sci. Rep. 4(1), 6302 (2014)
https://doi.org/10.1038/srep06302
42 J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
https://doi.org/10.1038/nature06715
43 J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
https://doi.org/10.1038/nphys1707
44 M. Bhattacharya, H. Uys, and P. Meystre, Optomechanical trapping and cooling of partially reflective mirrors, Phys. Rev. A 77(3), 033819 (2008)
https://doi.org/10.1103/PhysRevA.77.033819
45 E. J. Kim, J. R. Johansson, and F. Nori, Circuit analog of quadratic optomechanics, Phys. Rev. A 91(3), 033835 (2015)
https://doi.org/10.1103/PhysRevA.91.033835
46 H. K. Li, Y. C. Liu, X. Yi, C. L. Zou, X. X. Ren, and Y. F. Xiao, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Phys. Rev. A 85(5), 053832 (2012)
https://doi.org/10.1103/PhysRevA.85.053832
47 G. L. Zhu, X. Y. Lü, L. L. Wan, T. S. Yin, Q. Bin, and Y. Wu, Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime, Phys. Rev. A 97(3), 033830 (2018)
https://doi.org/10.1103/PhysRevA.97.033830
48 C. S. Muñoz, A. Lara, J. Puebla, and F. Nori, Hybrid systems for the generation of nonclassical mechanical states via quadratic interactions, Phys. Rev. Lett. 121(12), 123604 (2018)
https://doi.org/10.1103/PhysRevLett.121.123604
49 X. Y. Lü, L. L. Zheng, G. L. Zhu, and Y. Wu, Singlephoton-triggered quantum phase transition, Phys. Rev. Appl. 9(6), 064006 (2018)
https://doi.org/10.1103/PhysRevApplied.9.064006
50 X. Y. Lü, G. L. Zhu, L. L. Zheng, and Y. Wu, Entanglement and quantum superposition induced by a single photon, Phys. Rev. A 97(3), 033807 (2018)
https://doi.org/10.1103/PhysRevA.97.033807
51 G. L. Zhu, X. Y. Lü, L. L. Zheng, Z. M. Zhan, F. Nori, and Y. Wu, Single-photon-triggered quantum chaos, Phys. Rev. A 100, 023825 (2019)
https://doi.org/10.1103/PhysRevA.100.023825
52 S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature 460(7256), 724 (2009)
https://doi.org/10.1038/nature08171
53 M. Liu, S. Chesi, Z. J. Ying, X. Chen, H. G. Luo, and H. Q. Lin, Universal scaling and critical exponents of the anisotropic quantum Rabi model, Phys. Rev. Lett. 119(22), 220601 (2017)
https://doi.org/10.1103/PhysRevLett.119.220601
54 A. Altland and T. Brandes, Quantum chaos and effective thermalization, Phys. Rev. Lett. 108(7), 073601 (2012)
https://doi.org/10.1103/PhysRevLett.108.073601
55 F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Atomic coherent states in quantum optics, Phys. Rev. A 6(6), 2211 (1972)
https://doi.org/10.1103/PhysRevA.6.2211
56 R. J. Glauber and F. Haake, Superradiant pulses and directed angular momentum states, Phys. Rev. A 13(1), 357 (1976)
https://doi.org/10.1103/PhysRevA.13.357
57 M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and M. C. Nemes, Chaos in a spin-boson sytem: Classical analysis, Ann. Phys. 216(2), 291 (1992)
https://doi.org/10.1016/0003-4916(92)90178-O
58 J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Classical chaos in atom-field systems, Phys. Rev. E 94(2), 022209 (2016)
https://doi.org/10.1103/PhysRevE.94.022209
59 P. Stránský, M. Macek, and P. Cejnar, Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties, Ann. Phys. 345, 73 (2014)
https://doi.org/10.1016/j.aop.2014.03.006
60 M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems (I): Density of states and excited-state quantum phase transitions, Phys. Rev. A 89(3), 032101 (2014)
https://doi.org/10.1103/PhysRevA.89.032101
61 M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems (II): Chaos and regularity, Phys. Rev. A 89(3), 032102 (2014)
https://doi.org/10.1103/PhysRevA.89.032102
62 P. Perez-Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E. García-Ramos, and A. Relaño, Quantum quench influenced by an excited-state phase transition, Phys. Rev. A 83(3), 033802 (2011)
https://doi.org/10.1103/PhysRevA.83.033802
63 T. Brandes, Excited-state quantum phase transitions in Dicke superradiance models, Phys. Rev. E 88(3), 032133 (2013)
https://doi.org/10.1103/PhysRevE.88.032133
64 X. Y. Lü, W. M. Zhang, A. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3(1), 2943 (2013)
https://doi.org/10.1038/srep02943
65 A. Peres, New conserved quantities and test for regular spectra, Phys. Rev. Lett. 53(18), 1711 (1984)
https://doi.org/10.1103/PhysRevLett.53.1711
66 D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature 444(7115), 75 (2006)
https://doi.org/10.1038/nature05231
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[6] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[7] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[8] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[9] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[10] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[11] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[12] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[13] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[14] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[15] Zhen-Kun Wu,Peng Li,Yu-Zong Gu. Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media[J]. Front. Phys. , 2017, 12(5): 124203-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed