|
|
Renormalization group theory for temperature-driven first-order phase transitions in scalar models |
Ning Liang,Fan Zhong( ) |
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-conjugate pair of imaginary fixed points of φ3 theory. Scaling theories and renormalization group theories are developed to account for the phenomena, and three universality classes with their own hysteresis exponents are found: a field-like thermal class, a partly thermal class, and a purely thermal class, designated, respectively, as Thermal Classes I, II, and III. The first two classes arise from the opposite limits of the scaling forms proposed and may cross over to each other depending on the temperature sweep rate. They are both described by a massless model and a purely massive model, both of which are equivalent and are derived from φ3 theory via symmetry. Thermal Class III characterizes the cooling transitions in the absence of applied external fields and is described by purely thermal models, which include cases in which the order parameters possess different symmetries and thus exhibit different universality classes. For the purely thermal models whose free energies contain odd-symmetry terms, Thermal Class III emerges only at the mean-field level and is identical to Thermal Class II. Fluctuations change the model into the other two models. Using the extant three- and twoloop results for the static and dynamic exponents for the Yang–Lee edge singularity, respectively, which falls into the same universality class as φ3 theory, we estimate the thermal hysteresis exponents of the various classes to the same precision. Comparisons with numerical results and experiments are briefly discussed.
|
Keywords
first-order phase transitions
thermal phase transitions
renormalization group theory
φ3 theory
scaling and universality
thermal classes
instability exponents
finite-time scaling
scalar model
dynamics
thermal hysteresis
|
Corresponding Author(s):
Fan Zhong
|
Issue Date: 17 March 2017
|
|
1 |
Z. C. Lin, K. F. Liang, W. G. Zeng, and J. X. Zhang, Dynamic equation and characteristic internal frictions of mobile interfaces in phase transitions, in: Internal Friction and Ultrasonic Attenuation, eds. T. S. Ke and L. D. Zhang, Beijing: Atomic Energy Press of China, 1989, p. 87
|
2 |
K. F. Liang, Z. C. Lin, P. C. W. Fung, and J. X. Zhang, Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress, Phys. Rev. B 56(5), 2453 (1997)
https://doi.org/10.1103/PhysRevB.56.2453
|
3 |
See, e. g., J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in firstorder phase transition of solids, Solid State Commun. 97(10), 847 (1996)
https://doi.org/10.1016/0038-1098(95)00781-4
|
4 |
J. Liu and J. X. Zhang, Temperature-rate dependent kinetics of martensitic transformation in MnCu alloy, Solid State Commun. 98(6), 539 (1996)
https://doi.org/10.1016/0038-1098(96)00046-4
|
5 |
P. C. W. Fung, J. X. Zhang, Y. Lin, K. F. Liang, and Z. C. Lin, Analysis of dissipation of a burst-type martensite transformation in a Fe-Mn alloy by internal friction measurements, Phys. Rev. B 54(10), 7074 (1996)
https://doi.org/10.1103/PhysRevB.54.7074
|
6 |
Z. Q. Kuang, J. X. Zhang, X. H. Zhang, K. F. Liang, and P. C. W. Fung, Scaling behaviours in the thermoelastic martensitic transformation of Co, Solid State Commun. 114(4), 231 (2000)
https://doi.org/10.1016/S0038-1098(00)00028-4
|
7 |
M. Rao and R. Pandit, Magnetic and thermal hysteresis in the O(N)-symmetric (φ2)3 model, Phys. Rev. B 43(4), 3373 (1991)
https://doi.org/10.1103/PhysRevB.43.3373
|
8 |
F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
https://doi.org/10.1103/PhysRevE.51.2898
|
9 |
S. Yıldız, Ö. Pekcan, A. N. Berker, and H. Özbek, Scaling of thermal hysteresis at nematic-smectic-A phase transition in a binary mixture, Phys. Rev. E 69(3), 031705 (2004)
https://doi.org/10.1103/PhysRevE.69.031705
|
10 |
F. Zhong, and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
https://doi.org/10.1103/PhysRevLett.95.175701
|
11 |
F. Zhong, Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model, Front. Phys. 12, 126403 (2017)
https://doi.org/10.1007/s11467-016-0632-z
|
12 |
F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
https://doi.org/10.1103/PhysRevE.86.022104
|
13 |
S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
https://doi.org/10.1007/s10955-011-0225-8
|
14 |
Y. T. Li and F. Zhong, Functional renormalization group approach to the dynamics of first-order phase transitions, arXiv: 1111.1573 (2011)
|
15 |
M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
https://doi.org/10.1103/PhysRevLett.40.1610
|
16 |
J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
https://doi.org/10.1007/BFb0035331
|
17 |
J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
|
18 |
K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
https://doi.org/10.1088/0034-4885/50/7/001
|
19 |
K. Binder and P. Fratzl, in: Phase Transformations in Materials, ed. G. Kostorz, Weinheim: Wiley, 2001
|
20 |
K. Binder, C. Billotet, and P. Mirold, On the theory of spinodal decomposition in solid and liquid binary mixtures, Z. Phys. B 30(2), 183 (1978)
https://doi.org/10.1007/BF01320985
|
21 |
C. Billotet and K. Binder, Nonlinear relaxation at firstorder phase transitions: A Ginzburg–Landau theory including fluctuations, Z. Phys. B 32(2), 195 (1979)
https://doi.org/10.1007/BF01320116
|
22 |
K. Kawasaki, T. Imaeda, and J. D. Gunton, in: Perspectives in Statistical Physics, ed. H. J. Raveché, Amsterdam: North Holland, 1981, p. 201
|
23 |
K. Kaski, K. Binder, and J. D. Gunton, A study of a coarse-grained free energy functional for the threedimensional Ising model, J. Phys. A 16(16), L623 (1983)
https://doi.org/10.1088/0305-4470/16/16/007
|
24 |
K. Kaski, K. Binder, and J. D. Gunton, Study of cell distribution functions of the three-dimensional Ising model, Phys. Rev. B 29(7), 3996 (1984)
https://doi.org/10.1103/PhysRevB.29.3996
|
25 |
D. W. Heermann, W. Klein, and D. Stauffer, Spinodals in a long-range interaction system, Phys. Rev. Lett. 49, 1262 (1982)
https://doi.org/10.1103/PhysRevLett.49.1262
|
26 |
N. Gulbahce, H. Gould, and W. Klein, Zeros of the partition function and pseudospinodals in long-range Ising models, Phys. Rev. E 69(3), 036119 (2004)
https://doi.org/10.1103/PhysRevE.69.036119
|
27 |
J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
https://doi.org/10.1016/0003-4916(67)90200-X
|
28 |
W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
https://doi.org/10.1103/PhysRevB.28.445
|
29 |
C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
https://doi.org/10.1103/PhysRevB.29.2698
|
30 |
D. W. Oxtoby, Homogeneous nucleation: Theory and experiment, J. Phys.: Condens. Matter 4(38), 7627 (1992)
https://doi.org/10.1088/0953-8984/4/38/001
|
31 |
P. B. Thomas and D. Dhar, Hysteresis in isotropic spin systems, J. Phys. A 26(16), 3973 (1993)
https://doi.org/10.1088/0305-4470/26/16/014
|
32 |
S. W. Sides, P. A. Rikvold, and M. A. Novotny, Stochastic hysteresis and resonance in a kinetic Ising system, Phys. Rev. E 57(6), 6512 (1998)
https://doi.org/10.1103/PhysRevE.57.6512
|
33 |
S. W. Sides, P. A. Rikvold, and M. A. Novotny, Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition, Phys. Rev. E 59(3), 2710 (1999)
https://doi.org/10.1103/PhysRevE.59.2710
|
34 |
M. Acharyya and B. K. Chakrabarti, Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B 52(9), 6550 (1995)
https://doi.org/10.1103/PhysRevB.52.6550
|
35 |
L. D. Landau and E. M. Lifshitz, Statistical Physics, Ch. XIV, Oxford: Pergamon, 1986
|
36 |
P. G. de Gennes, Short range order effects in the isotropic phase of nematics and cholesterics, Mol. Cryst. Liq. Cryst. 12(3), 193 (1971)
https://doi.org/10.1080/15421407108082773
|
37 |
A. F. Devonshire, Theory of barium titanate (Part I), Phil. Mag. 40, 1040 (1949); A. F. Devonshire, Theory of barium titanate (Part II), Phil. Mag. 42, 1065 (1951)
https://doi.org/10.1080/14786444908561372
|
38 |
P. C. Hohenberg, and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
https://doi.org/10.1103/RevModPhys.49.435
|
39 |
N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. Condensed Matter 41(1), 55 (1981)
https://doi.org/10.1007/BF01301410
|
40 |
F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
https://doi.org/10.1103/PhysRevE.73.047102
|
41 |
S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
https://doi.org/10.1088/1367-2630/12/4/043036
|
42 |
F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, p. 469, Rijeka: Intech, 2011. Available at
|
43 |
CRC Standard Mathematical Tables & Formulae, ed. D. Zwillinger, 30th Ed., Florida: CRC, 1996
|
44 |
P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
https://doi.org/10.1103/PhysRevLett.65.1873
|
45 |
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd Ed., Oxford: Clarendon, 1996
|
46 |
D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, 3nd Ed., Singapore: World Scientific, 2005
https://doi.org/10.1142/5715
|
47 |
H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theory, Singapore: World Scientific, 2001
https://doi.org/10.1142/4733
|
48 |
A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
https://doi.org/10.1201/9780203483565
|
49 |
F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems, Phys. Rev. B 7(1), 248 (1973)
https://doi.org/10.1103/PhysRevB.7.248
|
50 |
K. G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Rep. 12(2), 75 (1974)
https://doi.org/10.1016/0370-1573(74)90023-4
|
51 |
S. K. Ma, Modern Theory of Critical Phenomena, Benjamin, 1976
|
52 |
H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, ed. C. P. Enz, Berlin: Springer, 1979
https://doi.org/10.1007/3-540-09523-3_2
|
53 |
H. K. Janssen, in: From Phase Transition to Chaos, edited by G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992
|
54 |
U. C. Täuber, Critical Dynamics,
|
55 |
P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
https://doi.org/10.1103/PhysRevA.8.423
|
56 |
G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
https://doi.org/10.1016/0550-3213(72)90279-9
|
57 |
C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
https://doi.org/10.1103/PhysRevB.18.353
|
58 |
O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ε3 for φ3 models of critical phenomena in 6-εdimensions, J. Phys. Math.Gen. 13(7), L247 (1980)
https://doi.org/10.1088/0305-4470/13/7/006
|
59 |
O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
https://doi.org/10.1088/0305-4470/14/9/034
|
60 |
J. Yu, Scaling of first-order phase transition dynamics, Master thesis, Sun Yat-sen University, 2012 (unpublished)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|