Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (6) : 126403    https://doi.org/10.1007/s11467-016-0633-y
RESEARCH ARTICLE
Renormalization group theory for temperature-driven first-order phase transitions in scalar models
Ning Liang,Fan Zhong()
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(437 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-conjugate pair of imaginary fixed points of φ3 theory. Scaling theories and renormalization group theories are developed to account for the phenomena, and three universality classes with their own hysteresis exponents are found: a field-like thermal class, a partly thermal class, and a purely thermal class, designated, respectively, as Thermal Classes I, II, and III. The first two classes arise from the opposite limits of the scaling forms proposed and may cross over to each other depending on the temperature sweep rate. They are both described by a massless model and a purely massive model, both of which are equivalent and are derived from φ3 theory via symmetry. Thermal Class III characterizes the cooling transitions in the absence of applied external fields and is described by purely thermal models, which include cases in which the order parameters possess different symmetries and thus exhibit different universality classes. For the purely thermal models whose free energies contain odd-symmetry terms, Thermal Class III emerges only at the mean-field level and is identical to Thermal Class II. Fluctuations change the model into the other two models. Using the extant three- and twoloop results for the static and dynamic exponents for the Yang–Lee edge singularity, respectively, which falls into the same universality class as φ3 theory, we estimate the thermal hysteresis exponents of the various classes to the same precision. Comparisons with numerical results and experiments are briefly discussed.

Keywords first-order phase transitions      thermal phase transitions      renormalization group theory      φ3 theory      scaling and universality      thermal classes      instability exponents      finite-time scaling      scalar model      dynamics      thermal hysteresis     
Corresponding Author(s): Fan Zhong   
Issue Date: 17 March 2017
 Cite this article:   
Ning Liang,Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0633-y
https://academic.hep.com.cn/fop/EN/Y2017/V12/I6/126403
1 Z. C. Lin, K. F. Liang, W. G. Zeng, and J. X. Zhang, Dynamic equation and characteristic internal frictions of mobile interfaces in phase transitions, in: Internal Friction and Ultrasonic Attenuation, eds. T. S. Ke and L. D. Zhang, Beijing: Atomic Energy Press of China, 1989, p. 87
2 K. F. Liang, Z. C. Lin, P. C. W. Fung, and J. X. Zhang, Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress, Phys. Rev. B 56(5), 2453 (1997)
https://doi.org/10.1103/PhysRevB.56.2453
3 See, e. g., J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in firstorder phase transition of solids, Solid State Commun. 97(10), 847 (1996)
https://doi.org/10.1016/0038-1098(95)00781-4
4 J. Liu and J. X. Zhang, Temperature-rate dependent kinetics of martensitic transformation in MnCu alloy, Solid State Commun. 98(6), 539 (1996)
https://doi.org/10.1016/0038-1098(96)00046-4
5 P. C. W. Fung, J. X. Zhang, Y. Lin, K. F. Liang, and Z. C. Lin, Analysis of dissipation of a burst-type martensite transformation in a Fe-Mn alloy by internal friction measurements, Phys. Rev. B 54(10), 7074 (1996)
https://doi.org/10.1103/PhysRevB.54.7074
6 Z. Q. Kuang, J. X. Zhang, X. H. Zhang, K. F. Liang, and P. C. W. Fung, Scaling behaviours in the thermoelastic martensitic transformation of Co, Solid State Commun. 114(4), 231 (2000)
https://doi.org/10.1016/S0038-1098(00)00028-4
7 M. Rao and R. Pandit, Magnetic and thermal hysteresis in the O(N)-symmetric (φ2)3 model, Phys. Rev. B 43(4), 3373 (1991)
https://doi.org/10.1103/PhysRevB.43.3373
8 F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
https://doi.org/10.1103/PhysRevE.51.2898
9 S. Yıldız, Ö. Pekcan, A. N. Berker, and H. Özbek, Scaling of thermal hysteresis at nematic-smectic-A phase transition in a binary mixture, Phys. Rev. E 69(3), 031705 (2004)
https://doi.org/10.1103/PhysRevE.69.031705
10 F. Zhong, and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
https://doi.org/10.1103/PhysRevLett.95.175701
11 F. Zhong, Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model, Front. Phys. 12, 126403 (2017)
https://doi.org/10.1007/s11467-016-0632-z
12 F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
https://doi.org/10.1103/PhysRevE.86.022104
13 S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
https://doi.org/10.1007/s10955-011-0225-8
14 Y. T. Li and F. Zhong, Functional renormalization group approach to the dynamics of first-order phase transitions, arXiv: 1111.1573 (2011)
15 M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
https://doi.org/10.1103/PhysRevLett.40.1610
16 J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
https://doi.org/10.1007/BFb0035331
17 J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
18 K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
https://doi.org/10.1088/0034-4885/50/7/001
19 K. Binder and P. Fratzl, in: Phase Transformations in Materials, ed. G. Kostorz, Weinheim: Wiley, 2001
20 K. Binder, C. Billotet, and P. Mirold, On the theory of spinodal decomposition in solid and liquid binary mixtures, Z. Phys. B 30(2), 183 (1978)
https://doi.org/10.1007/BF01320985
21 C. Billotet and K. Binder, Nonlinear relaxation at firstorder phase transitions: A Ginzburg–Landau theory including fluctuations, Z. Phys. B 32(2), 195 (1979)
https://doi.org/10.1007/BF01320116
22 K. Kawasaki, T. Imaeda, and J. D. Gunton, in: Perspectives in Statistical Physics, ed. H. J. Raveché, Amsterdam: North Holland, 1981, p. 201
23 K. Kaski, K. Binder, and J. D. Gunton, A study of a coarse-grained free energy functional for the threedimensional Ising model, J. Phys. A 16(16), L623 (1983)
https://doi.org/10.1088/0305-4470/16/16/007
24 K. Kaski, K. Binder, and J. D. Gunton, Study of cell distribution functions of the three-dimensional Ising model, Phys. Rev. B 29(7), 3996 (1984)
https://doi.org/10.1103/PhysRevB.29.3996
25 D. W. Heermann, W. Klein, and D. Stauffer, Spinodals in a long-range interaction system, Phys. Rev. Lett. 49, 1262 (1982)
https://doi.org/10.1103/PhysRevLett.49.1262
26 N. Gulbahce, H. Gould, and W. Klein, Zeros of the partition function and pseudospinodals in long-range Ising models, Phys. Rev. E 69(3), 036119 (2004)
https://doi.org/10.1103/PhysRevE.69.036119
27 J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
https://doi.org/10.1016/0003-4916(67)90200-X
28 W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
https://doi.org/10.1103/PhysRevB.28.445
29 C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
https://doi.org/10.1103/PhysRevB.29.2698
30 D. W. Oxtoby, Homogeneous nucleation: Theory and experiment, J. Phys.: Condens. Matter 4(38), 7627 (1992)
https://doi.org/10.1088/0953-8984/4/38/001
31 P. B. Thomas and D. Dhar, Hysteresis in isotropic spin systems, J. Phys. A 26(16), 3973 (1993)
https://doi.org/10.1088/0305-4470/26/16/014
32 S. W. Sides, P. A. Rikvold, and M. A. Novotny, Stochastic hysteresis and resonance in a kinetic Ising system, Phys. Rev. E 57(6), 6512 (1998)
https://doi.org/10.1103/PhysRevE.57.6512
33 S. W. Sides, P. A. Rikvold, and M. A. Novotny, Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition, Phys. Rev. E 59(3), 2710 (1999)
https://doi.org/10.1103/PhysRevE.59.2710
34 M. Acharyya and B. K. Chakrabarti, Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B 52(9), 6550 (1995)
https://doi.org/10.1103/PhysRevB.52.6550
35 L. D. Landau and E. M. Lifshitz, Statistical Physics, Ch. XIV, Oxford: Pergamon, 1986
36 P. G. de Gennes, Short range order effects in the isotropic phase of nematics and cholesterics, Mol. Cryst. Liq. Cryst. 12(3), 193 (1971)
https://doi.org/10.1080/15421407108082773
37 A. F. Devonshire, Theory of barium titanate (Part I), Phil. Mag. 40, 1040 (1949); A. F. Devonshire, Theory of barium titanate (Part II), Phil. Mag. 42, 1065 (1951)
https://doi.org/10.1080/14786444908561372
38 P. C. Hohenberg, and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
https://doi.org/10.1103/RevModPhys.49.435
39 N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. Condensed Matter 41(1), 55 (1981)
https://doi.org/10.1007/BF01301410
40 F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
https://doi.org/10.1103/PhysRevE.73.047102
41 S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
https://doi.org/10.1088/1367-2630/12/4/043036
42 F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, p. 469, Rijeka: Intech, 2011. Available at
43 CRC Standard Mathematical Tables & Formulae, ed. D. Zwillinger, 30th Ed., Florida: CRC, 1996
44 P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
https://doi.org/10.1103/PhysRevLett.65.1873
45 J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd Ed., Oxford: Clarendon, 1996
46 D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, 3nd Ed., Singapore: World Scientific, 2005
https://doi.org/10.1142/5715
47 H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theory, Singapore: World Scientific, 2001
https://doi.org/10.1142/4733
48 A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
https://doi.org/10.1201/9780203483565
49 F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems, Phys. Rev. B 7(1), 248 (1973)
https://doi.org/10.1103/PhysRevB.7.248
50 K. G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Rep. 12(2), 75 (1974)
https://doi.org/10.1016/0370-1573(74)90023-4
51 S. K. Ma, Modern Theory of Critical Phenomena, Benjamin, 1976
52 H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, ed. C. P. Enz, Berlin: Springer, 1979
https://doi.org/10.1007/3-540-09523-3_2
53 H. K. Janssen, in: From Phase Transition to Chaos, edited by G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992
54 U. C. Täuber, Critical Dynamics,
55 P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
https://doi.org/10.1103/PhysRevA.8.423
56 G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
https://doi.org/10.1016/0550-3213(72)90279-9
57 C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
https://doi.org/10.1103/PhysRevB.18.353
58 O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ε3 for φ3 models of critical phenomena in 6-εdimensions, J. Phys. Math.Gen. 13(7), L247 (1980)
https://doi.org/10.1088/0305-4470/13/7/006
59 O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
https://doi.org/10.1088/0305-4470/14/9/034
60 J. Yu, Scaling of first-order phase transition dynamics, Master thesis, Sun Yat-sen University, 2012 (unpublished)
[1] Zhan-Chun Tu. Abstract models for heat engines[J]. Front. Phys. , 2021, 16(3): 33202-.
[2] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[3] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[4] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[5] Michael L. Goodman, Chiman Kwan, Bulent Ayhan, Eric L. Shang. A new approach to solar flare prediction[J]. Front. Phys. , 2020, 15(3): 34601-.
[6] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[7] Yang Gao. Semiclassical dynamics and nonlinear charge current[J]. Front. Phys. , 2019, 14(3): 33404-.
[8] T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition[J]. Front. Phys. , 2019, 14(2): 23601-.
[9] Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes[J]. Front. Phys. , 2018, 13(5): 138206-.
[10] Rui Wang, Li-Mei Xu, Feng Wang. Molecular-scale processes affecting growth rates of ice at moderate supercooling[J]. Front. Phys. , 2018, 13(5): 138116-.
[11] Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation[J]. Front. Phys. , 2018, 13(5): 134209-.
[12] Ying-Ting Lin, Xiao-Pu Han, Bo-Kui Chen, Jun Zhou, Bing-Hong Wang. Evolution of innovative behaviors on scale-free networks[J]. Front. Phys. , 2018, 13(4): 130308-.
[13] Hui-Li Wang (王会丽), Zhen-Peng Hu (胡振芃), Hui Li (李晖). Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations[J]. Front. Phys. , 2018, 13(3): 138107-.
[14] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[15] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed