|
|
Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes |
Hui-Juan Xu1,2, Tong Tong1,2, Rui-Zheng Hou1,2( ), Hong-Rong Li1,2 |
1. School of Science, Xi’an Jiaotong University, Xi’an 710049, China 2. Institute of Quantum Optics and Quantum Information, Xi’an Jiaotong University, Xi’an 710049, China |
|
|
Abstract The biomolecular motor kinesin uses chemical energy released from a fuel reaction to generate directional movement and produce mechanical work. The underlying physical mechanism is not fully understood yet. To analyze the energetics of the motor, we reconceptualize its chemomechanical cycle in terms of separate fuel reaction and work production processes and introduce a thermodynamic constraint to optimize the cycle. The model predicts that the load dependences of the motor’s velocity, stepping ratio, and dwell time are determined by the mechanical parameters of the motor–track system rather than the fuel reaction rate. This behavior is verified using reported experimental data from wild-type and elongated kinesins. The fuel reaction and work production processes indicate that kinesin is driven by switching between two chemical states, probably following a general pattern for molecular motors. The comparison with experimental data indicates that the fuel reaction processes are close to adiabatic, which is important for efficient operation of the motor. The model also suggests that a soft, short neck linker is important for the motor to maintain its load transport velocity.
|
Keywords
kinesin
chemomechanical coupling
thermodynamics
entropy production
|
Corresponding Author(s):
Rui-Zheng Hou
|
Issue Date: 24 April 2018
|
|
1 |
R. D. Vale and R. A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science 288(5463), 88 (2000)
https://doi.org/10.1126/science.288.5463.88
|
2 |
R. D. Vale, The molecular motor toolbox for intracellular transport, Cell 112(4), 467 (2003)
https://doi.org/10.1016/S0092-8674(03)00111-9
|
3 |
S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naber, B. O. Carragher, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E. W. Taylor, R. A. Milligan, and R. D. Vale, A structural change in the kinesin motor protein that drives motility, Nature 402(6763), 778 (1999)
https://doi.org/10.1038/45483
|
4 |
S. Rice, Y. Cui, C. Sindelar, N. Naber, M. Matuska, R. Vale, and R. Cooke, Thermodynamics properties of the kinesin neck-region docking to the catalytic core, Biophys. J. 84(3), 1844 (2003)
https://doi.org/10.1016/S0006-3495(03)74992-3
|
5 |
K. Visscher, M. J. Schnitzer, and S. M. Block, Single kinesin molecules studied with a molecular force clamp, Nature 400(6740), 184 (1999)
https://doi.org/10.1038/22146
|
6 |
N. J. Carter and R. A. Cross, Mechanics of the kinesin step, Nature 435(7040), 308 (2005)
https://doi.org/10.1038/nature03528
|
7 |
M. Nishiyama, H. Higuchi, and T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules, Nat. Cell Biol. 4(10), 790 (2002)
https://doi.org/10.1038/ncb857
|
8 |
Y. Taniguchi, M. Nishiyama, Y. Ishii, and T. Yanagida, Entropy rectifies the Brownian steps of kinesin, Nat. Chem. Biol. 1(6), 342 (2005)
https://doi.org/10.1038/nchembio741
|
9 |
M. J. Schnitzer, K. Visscher, and S. M. Block, Force production by single kinesin motors, Nat. Cell Biol. 2(10), 718 (2000)
https://doi.org/10.1038/35036345
|
10 |
S. Liepelt and R. Lipowsky, Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett. 98(25), 258102 (2007)
https://doi.org/10.1103/PhysRevLett.98.258102
|
11 |
S. Liepelt and R. Lipowsky, Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes, EPL 77(5), 50002 (2007)
https://doi.org/10.1209/0295-5075/77/50002
|
12 |
Z. S. Wang, M. Feng, W. W. Zheng, and D. G. Fan, Kinesin is an evolutionarily fine-tuned molecular ratchetand- pawl device of decisively locked directionality, Biophys. J. 93(10), 3363 (2007)
https://doi.org/10.1529/biophysj.107.108233
|
13 |
D. G. Fan, W. W. Zheng, R. Hou, F. Li, and Z. S. Wang, Modelling motility of the kinesin dimer from molecular properties of individual monomers, Biochemistry 47(16), 4733 (2008)
https://doi.org/10.1021/bi800072p
|
14 |
R. D. Astumian, Thermodynamics and kinetics of molecular motors, Biophys. J. 98(11), 2401 (2010)
https://doi.org/10.1016/j.bpj.2010.02.040
|
15 |
R. D. Astumian, Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines, Biophys. J. 108(2), 291 (2015)
https://doi.org/10.1016/j.bpj.2014.11.3459
|
16 |
J. Ren, Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis, Front. Phys. 12(6), 120505 (2017)
https://doi.org/10.1007/s11467-017-0658-x
|
17 |
B. E. Clancy, W. M. Behnke-Parks, J. O. L. Andreasson, S. S. Rosenfeld, and S. M. Block, A universal pathway for kinesin stepping, Nat. Struct. Mol. Biol. 18(9), 1020 (2011)
https://doi.org/10.1038/nsmb.2104
|
18 |
R. A. Cross, The kinetic mechanism of kinesin, Trends Biochem. Sci. 29(6), 301 (2004)
https://doi.org/10.1016/j.tibs.2004.04.010
|
19 |
B. Milic, J. O. L. Andreasson, W. O. Hancock, and S. M. Block, Kinesin processivity is gated by phosphate release, Proc. Natl. Acad. Sci. USA 111(39), 14136 (2014)
https://doi.org/10.1073/pnas.1410943111
|
20 |
K. J. Mickolajczyk, N. C. Deffenbaugh, J. Ortega Arroyo, J. Andrecka, P. Kukura, and W. O. Hancock, Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle, Proc. Natl. Acad. Sci. USA 112(52), E7186 (2015)
https://doi.org/10.1073/pnas.1517638112
|
21 |
G. Y. Chen, D. F. J. Arginteanu, and W. O. Hancock, Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating, J. Biol. Chem. 290(16), 10274 (2015)
https://doi.org/10.1074/jbc.M114.628032
|
22 |
A. Efremov and Z. S. Wang, Universal optimal working cycles of molecular motors, Phys. Chem. Chem. Phys. 13(13), 6223 (2011)
https://doi.org/10.1039/c0cp02118k
|
23 |
U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett. 95(4), 040602 (2005)
https://doi.org/10.1103/PhysRevLett.95.040602
|
24 |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys. 48(4), 571 (1976)
https://doi.org/10.1103/RevModPhys.48.571
|
25 |
M. Rubinstein and R. H. Colby, Polymer Physics, Oxford: Oxford University Press, 2003
|
26 |
I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, The myosin coiled-coil is a truly elastic protein structure, Nat. Mater. 1(4), 232 (2002)
https://doi.org/10.1038/nmat776
|
27 |
R. Yasuda, H. Noji, K. Jr Kinosita, and M. Yoshida, F1− ATPase is a highly efficient molecular motor that rotates with discrete 120° steps, Cell 93(7), 1117 (1998)
https://doi.org/10.1016/S0092-8674(00)81456-7
|
28 |
S. Toyabe, T. Watanabe-Nakayama, T. Okamoto, S. Kudo, and E. Muneyuki, Thermodynamic efficiency and mechanochemical coupling of F-1-ATPase, Proc. Natl. Acad. Sci. USA 108(44), 17951 (2011)
https://doi.org/10.1073/pnas.1106787108
|
29 |
S. Toyabe and E. Muneyuki, Single molecule thermodynamics of ATP synthesis by F-1-ATPase, New J. Phys. 17(1), 015008 (2015)
https://doi.org/10.1088/1367-2630/17/1/015008
|
30 |
R. Z. Hou and Z. S. Wang, Role of directional fidelity in multiple aspects of extreme performance of the F-1- ATPase motor, Phys. Rev. E 88(2), 022703 (2013)
https://doi.org/10.1103/PhysRevE.88.022703
|
31 |
Z. S. Wang, R. Z. Hou, and A. Efremov, Directional fidelity of nanoscale motors and particles is limited by the 2nd law of thermodynamics-Via a universal equality, J. Chem. Phys. 139(3), 035105 (2013)
https://doi.org/10.1063/1.4813626
|
32 |
Z. S. Wang, Synergic mechanism and fabrication target for bipedal nanomotors, Proc. Natl. Acad. Sci. USA 104(46), 17921 (2007)
https://doi.org/10.1073/pnas.0703639104
|
33 |
J. Cheng, S. Sreelatha, R. Z. Hou, A. Efremov, R. C. Liu, J. R. C. van der Maarel, and Z. S. Wang, Bipedal nanowalker by pure physical mechanisms, Phys. Rev. Lett. 109(23), 238104 (2012)
https://doi.org/10.1103/PhysRevLett.109.238104
|
34 |
M. H. Liu, R. Z. Hou, J. Cheng, L. Y. Loh, S. Sreelatha, J. N. Tey, J. Wei, and Z. S. Wang, Autonomous synergic control of nanomotors, ACS Nano 8(2), 1792 (2014)
https://doi.org/10.1021/nn406187u
|
35 |
I. Y. Loh, J. Cheng, S. R. Tee, A. Efremov, and Z. Wang, From bistate molecular switches to self-directed trackwalking nanomotors, ACS Nano 8(10), 10293 (2014)
https://doi.org/10.1021/nn5034983
|
36 |
R. Hou, I. Y. Loh, H. Li, and Z. Wang, Mechanicalkinetic modeling of a molecular walker from a modular design principle, Phys. Rev. Appl. 7(2), 024020 (2017)
https://doi.org/10.1103/PhysRevApplied.7.024020
|
37 |
R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276(5314), 917 (1997)
https://doi.org/10.1126/science.276.5314.917
|
38 |
S. Uemura, H. Higuchi, A. O. Olivares, E. M. De La Cruz, and S. Ishiwata, Mechanochemical coupling of two substeps in a single myosin V motor, Nat. Struct. Mol. Biol. 11(9), 877 (2004)
https://doi.org/10.1038/nsmb806
|
39 |
N. Soga, K. Kimura, M. Jr Kinosita, Yoshida, and T. Suzuki, Perfect chemomechanical coupling of FoF1-ATP synthase, Proc. Natl. Acad. Sci. USA 114(19), 4960 (2017)
https://doi.org/10.1073/pnas.1700801114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|