Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 136105    https://doi.org/10.1007/s11467-018-0787-x
RESEARCH ARTICLE
A novel hybrid sp-sp2 metallic carbon allotrope
Qun Wei1(), Quan Zhang2, Mei-Guang Zhang3(), Hai-Yan Yan4, Li-Xin Guo1, Bing Wei1
1. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
2. School of Microelectronics, Xidian University, Xi’an 710071, China
3. College of Physics and Optoelectronic Technology, Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
4. College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
 Download: PDF(2603 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.

Keywords metallic carbon allotrope      first-principles calculations      mechanical and electronic      properties     
Corresponding Author(s): Qun Wei,Mei-Guang Zhang   
Issue Date: 25 May 2018
 Cite this article:   
Qun Wei,Quan Zhang,Mei-Guang Zhang, et al. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0787-x
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/136105
1 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318, 162 (1985)
https://doi.org/10.1038/318162a0
2 S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991)
https://doi.org/10.1038/354056a0
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
https://doi.org/10.1126/science.1102896
4 B. Winkler, C. J. Pickard, V. Milman, and G. Thimm, Systematic prediction of crystal structures, Chem. Phys. Lett. 337, 36 (2001)
https://doi.org/10.1016/S0009-2614(01)00126-9
5 M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, New metallic carbon crystal, Phys. Rev. Lett. 102, 055703 (2009)
https://doi.org/10.1103/PhysRevLett.102.055703
6 Y. Yao, J. S. Tse, J. Sun, D. D. Klug, R. Martoňák, and T. Iitaka, Comment on “new metallic carbon crystal”, Phys. Rev. Lett. 102, 229601 (2009)
https://doi.org/10.1103/PhysRevLett.102.229601
7 X. L. Sheng, H. J. Cui, F. Ye, Q. B. Yan, Q. R. Zheng, and G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys. 112, 074315 (2012)
https://doi.org/10.1063/1.4757410
8 C. He, L. Sun, C. Zhang, and J. Zhong, Two viable three-dimensional carbon semiconductors with an entirely sp2 configuration, Phys. Chem. Chem. Phys. 15, 680 (2013)
https://doi.org/10.1039/C2CP43221H
9 J. T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks, Sci. Rep. 4, 4339 (2014)
https://doi.org/10.1038/srep04339
10 G. M. Rignanese and J. C. Charlier, Hypothetical threedimensional all-sp2 carbon phase, Phys. Rev. B 78, 125415 (2008)
https://doi.org/10.1103/PhysRevB.78.125415
11 Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, Theoretical study of the elasticity, ideal strength and thermal conductivity of a pure sp2 carbon, Diamond Relat. Mater. 71, 73 (2017)
https://doi.org/10.1016/j.diamond.2016.12.005
12 Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102, 175506 (2009)
https://doi.org/10.1103/PhysRevLett.102.175506
13 C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, new superhard carbon phases between graphite and diamond, Solid State Commun. 152, 1560 (2012)
https://doi.org/10.1016/j.ssc.2012.05.022
14 X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106, 155703 (2011)
https://doi.org/10.1103/PhysRevLett.106.155703
15 J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8, 683 (2017)
https://doi.org/10.1038/s41467-017-00817-9
16 J. T. Wang, C. Chen, and Y. Kawazoe, Lowtemperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett. 106, 075501 (2011)
https://doi.org/10.1103/PhysRevLett.106.075501
17 X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138, 114101 (2013)
https://doi.org/10.1063/1.4794424
18 Q. Wei, M. Zhang, H. Yan, Z. Lin, and X. Zhu, Structural, electronic and mechanical properties of Imma-carbon, EPL 107, 27007 (2014)
https://doi.org/10.1209/0295-5075/107/27007
19 K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett. 104, 125504 (2010)
https://doi.org/10.1103/PhysRevLett.104.125504
20 Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang, and Y. Tian, Novel superhard carbon: C-centered orthorhombic C8, Phys. Rev. Lett. 107, 215502 (2011)
https://doi.org/10.1103/PhysRevLett.107.215502
21 C. Y. Niu, X. Q. Wang, and J. T. Wang, K6 carbon: A metallic carbon allotrope in sp3 bonding networks, J. Chem. Phys. 140, 054514 (2014)
https://doi.org/10.1063/1.4864109
22 Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal. Growth. Design. 16, 1360 (2016)
https://doi.org/10.1021/acs.cgd.5b01490
23 J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Conden. Matter 28, 475402 (2016)
https://doi.org/10.1088/0953-8984/28/47/475402
24 Z. Li, F. Gao, and Z. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations, Phys. Rev. B 85, 144115 (2012)
https://doi.org/10.1103/PhysRevB.85.144115
25 M. J. Rice, A. R. Bishop, and D. K. Campbell, Unusual soliton properties of the infinite polyyne chain, Phys. Rev. Lett. 51, 2136 (1983)
https://doi.org/10.1103/PhysRevLett.51.2136
26 T. R. Chalifoux WA, Synthesis of polyynes to model the sp-carbon allotrope carbyne, Nat. Chem. 2, 967 (2010)
https://doi.org/10.1038/nchem.828
27 H. Hirai and K. I. Kondo, Modified phases of diamond formed under shock compression and rapid quenching, Science 253, 772 (1991)
https://doi.org/10.1126/science.253.5021.772
28 W. L. Mao, H. k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Bonding changes in compressed superhard graphite, Science 302, 425 (2003)
https://doi.org/10.1126/science.1089713
29 Y. Wang, J. E. Panzik, B. Kiefer, and K. K. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2, 520 (2012)
https://doi.org/10.1038/srep00520
30 S. Zhang, Q. Wang, X. Chen, and P. Jena, Stable threedimensional metallic carbon with interlocking hexagons, Proc. Natl. Acad. Sci. USA 110, 18809 (2013)
https://doi.org/10.1073/pnas.1311028110
31 M. Hu, M. Ma, Z. Zhao, D. Yu, and J. He, Superhard sp2-sp3 hybrid carbon allotropes with tunable electronic properties, AIP Advances 6, 055020 (2016)
https://doi.org/10.1063/1.4952426
32 Y. Y. Zhang, S. Chen, H. Xiang, and X. G. Gong, Hybrid crystalline sp2-sp3 carbon as a high-efficiency solar cell absorber, Carbon 109, 246 (2016)
https://doi.org/10.1016/j.carbon.2016.08.015
33 C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6, 21879 (2016)
https://doi.org/10.1038/srep21879
34 Y. Pan, M. Hu, M. Ma, Z. Li, Y. Gao, M. Xiong, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, Multithreaded conductive carbon: 1D conduction in 3D carbon, Carbon 115, 584 (2017)
https://doi.org/10.1016/j.carbon.2017.01.052
35 Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52, 2385 (2017)
https://doi.org/10.1007/s10853-016-0564-6
36 X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
https://doi.org/10.1016/j.carbon.2017.07.034
37 P. D. Jarowski, M. D. Wodrich, C. S. Wannere, P. v. R. Schleyer, and K. N. Houk, How large is the conjugative stabilization of diynes? J. Am. Chem. Soc. 126, 15036 (2004)
https://doi.org/10.1021/ja046432h
38 H. Bu, M. Zhao, Y. Xi, X. Wang, H. Peng, C. Wang, and X. Liu, Is yne-diamond a super-hard material? EPL 100, 56003 (2012)
https://doi.org/10.1209/0295-5075/100/56003
39 S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49, 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
40 N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Electronic structure of three-dimensional graphyne, Phys. Rev. B 62, 11146 (2000)
https://doi.org/10.1103/PhysRevB.62.11146
41 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82, 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
42 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183, 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
43 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
44 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
45 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
46 G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
47 A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78, 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
48 A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006)
https://doi.org/10.1063/1.2404663
49 F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90, 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
50 R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65, 349 (1952)
https://doi.org/10.1088/0370-1298/65/5/307
51 Q. Zhang, Q. Wei, H. Yan, Q. Fan, X. Zhu, J. Zhang, and D. Zhang, Mechanical and electronic properties of P42/mnmsilicon carbides, Z. Naturforsch. A 71, 387 (2016)
https://doi.org/10.1515/zna-2015-0539
52 S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)
https://doi.org/10.1080/14786440808520496
[1] Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu. Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability[J]. Front. Phys. , 2021, 16(3): 33504-.
[2] Lianzhen Cao, Xia Liu, Yingde Li, Xiusheng Li, Lena Du, Shengyao Chen, Shenlong Zhao, Cong Wang. Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application[J]. Front. Phys. , 2021, 16(3): 33201-.
[3] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[4] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[5] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[6] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[7] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[8] Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes[J]. Front. Phys. , 2019, 14(1): 13401-.
[9] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[10] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[11] Hai-Ming Dong, San-Dong Guo, Yi-Feng Duan, Fei Huang, Wen Xu, Jin Zhang. Electronic and optical properties of single-layer MoS2[J]. Front. Phys. , 2018, 13(4): 137307-.
[12] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[13] Xiao-Ning Wang, Jun-Zhe Lu, Heng-Jiang Zhu, Fang-Fang Li, Miao-Miao Ma, Gui-Ping Tan. Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings[J]. Front. Phys. , 2018, 13(4): 136106-.
[14] Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices[J]. Front. Phys. , 2018, 13(3): 137805-.
[15] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed