|
|
A novel hybrid sp-sp2 metallic carbon allotrope |
Qun Wei1( ), Quan Zhang2, Mei-Guang Zhang3( ), Hai-Yan Yan4, Li-Xin Guo1, Bing Wei1 |
1. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China 2. School of Microelectronics, Xidian University, Xi’an 710071, China 3. College of Physics and Optoelectronic Technology, Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China 4. College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China |
|
|
Abstract In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.
|
Keywords
metallic carbon allotrope
first-principles calculations
mechanical and electronic
properties
|
Corresponding Author(s):
Qun Wei,Mei-Guang Zhang
|
Issue Date: 25 May 2018
|
|
1 |
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318, 162 (1985)
https://doi.org/10.1038/318162a0
|
2 |
S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991)
https://doi.org/10.1038/354056a0
|
3 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
https://doi.org/10.1126/science.1102896
|
4 |
B. Winkler, C. J. Pickard, V. Milman, and G. Thimm, Systematic prediction of crystal structures, Chem. Phys. Lett. 337, 36 (2001)
https://doi.org/10.1016/S0009-2614(01)00126-9
|
5 |
M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, New metallic carbon crystal, Phys. Rev. Lett. 102, 055703 (2009)
https://doi.org/10.1103/PhysRevLett.102.055703
|
6 |
Y. Yao, J. S. Tse, J. Sun, D. D. Klug, R. Martoňák, and T. Iitaka, Comment on “new metallic carbon crystal”, Phys. Rev. Lett. 102, 229601 (2009)
https://doi.org/10.1103/PhysRevLett.102.229601
|
7 |
X. L. Sheng, H. J. Cui, F. Ye, Q. B. Yan, Q. R. Zheng, and G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys. 112, 074315 (2012)
https://doi.org/10.1063/1.4757410
|
8 |
C. He, L. Sun, C. Zhang, and J. Zhong, Two viable three-dimensional carbon semiconductors with an entirely sp2 configuration, Phys. Chem. Chem. Phys. 15, 680 (2013)
https://doi.org/10.1039/C2CP43221H
|
9 |
J. T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks, Sci. Rep. 4, 4339 (2014)
https://doi.org/10.1038/srep04339
|
10 |
G. M. Rignanese and J. C. Charlier, Hypothetical threedimensional all-sp2 carbon phase, Phys. Rev. B 78, 125415 (2008)
https://doi.org/10.1103/PhysRevB.78.125415
|
11 |
Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, Theoretical study of the elasticity, ideal strength and thermal conductivity of a pure sp2 carbon, Diamond Relat. Mater. 71, 73 (2017)
https://doi.org/10.1016/j.diamond.2016.12.005
|
12 |
Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102, 175506 (2009)
https://doi.org/10.1103/PhysRevLett.102.175506
|
13 |
C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, new superhard carbon phases between graphite and diamond, Solid State Commun. 152, 1560 (2012)
https://doi.org/10.1016/j.ssc.2012.05.022
|
14 |
X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106, 155703 (2011)
https://doi.org/10.1103/PhysRevLett.106.155703
|
15 |
J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8, 683 (2017)
https://doi.org/10.1038/s41467-017-00817-9
|
16 |
J. T. Wang, C. Chen, and Y. Kawazoe, Lowtemperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett. 106, 075501 (2011)
https://doi.org/10.1103/PhysRevLett.106.075501
|
17 |
X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138, 114101 (2013)
https://doi.org/10.1063/1.4794424
|
18 |
Q. Wei, M. Zhang, H. Yan, Z. Lin, and X. Zhu, Structural, electronic and mechanical properties of Imma-carbon, EPL 107, 27007 (2014)
https://doi.org/10.1209/0295-5075/107/27007
|
19 |
K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett. 104, 125504 (2010)
https://doi.org/10.1103/PhysRevLett.104.125504
|
20 |
Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang, and Y. Tian, Novel superhard carbon: C-centered orthorhombic C8, Phys. Rev. Lett. 107, 215502 (2011)
https://doi.org/10.1103/PhysRevLett.107.215502
|
21 |
C. Y. Niu, X. Q. Wang, and J. T. Wang, K6 carbon: A metallic carbon allotrope in sp3 bonding networks, J. Chem. Phys. 140, 054514 (2014)
https://doi.org/10.1063/1.4864109
|
22 |
Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal. Growth. Design. 16, 1360 (2016)
https://doi.org/10.1021/acs.cgd.5b01490
|
23 |
J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Conden. Matter 28, 475402 (2016)
https://doi.org/10.1088/0953-8984/28/47/475402
|
24 |
Z. Li, F. Gao, and Z. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations, Phys. Rev. B 85, 144115 (2012)
https://doi.org/10.1103/PhysRevB.85.144115
|
25 |
M. J. Rice, A. R. Bishop, and D. K. Campbell, Unusual soliton properties of the infinite polyyne chain, Phys. Rev. Lett. 51, 2136 (1983)
https://doi.org/10.1103/PhysRevLett.51.2136
|
26 |
T. R. Chalifoux WA, Synthesis of polyynes to model the sp-carbon allotrope carbyne, Nat. Chem. 2, 967 (2010)
https://doi.org/10.1038/nchem.828
|
27 |
H. Hirai and K. I. Kondo, Modified phases of diamond formed under shock compression and rapid quenching, Science 253, 772 (1991)
https://doi.org/10.1126/science.253.5021.772
|
28 |
W. L. Mao, H. k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Bonding changes in compressed superhard graphite, Science 302, 425 (2003)
https://doi.org/10.1126/science.1089713
|
29 |
Y. Wang, J. E. Panzik, B. Kiefer, and K. K. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2, 520 (2012)
https://doi.org/10.1038/srep00520
|
30 |
S. Zhang, Q. Wang, X. Chen, and P. Jena, Stable threedimensional metallic carbon with interlocking hexagons, Proc. Natl. Acad. Sci. USA 110, 18809 (2013)
https://doi.org/10.1073/pnas.1311028110
|
31 |
M. Hu, M. Ma, Z. Zhao, D. Yu, and J. He, Superhard sp2-sp3 hybrid carbon allotropes with tunable electronic properties, AIP Advances 6, 055020 (2016)
https://doi.org/10.1063/1.4952426
|
32 |
Y. Y. Zhang, S. Chen, H. Xiang, and X. G. Gong, Hybrid crystalline sp2-sp3 carbon as a high-efficiency solar cell absorber, Carbon 109, 246 (2016)
https://doi.org/10.1016/j.carbon.2016.08.015
|
33 |
C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6, 21879 (2016)
https://doi.org/10.1038/srep21879
|
34 |
Y. Pan, M. Hu, M. Ma, Z. Li, Y. Gao, M. Xiong, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, Multithreaded conductive carbon: 1D conduction in 3D carbon, Carbon 115, 584 (2017)
https://doi.org/10.1016/j.carbon.2017.01.052
|
35 |
Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52, 2385 (2017)
https://doi.org/10.1007/s10853-016-0564-6
|
36 |
X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
https://doi.org/10.1016/j.carbon.2017.07.034
|
37 |
P. D. Jarowski, M. D. Wodrich, C. S. Wannere, P. v. R. Schleyer, and K. N. Houk, How large is the conjugative stabilization of diynes? J. Am. Chem. Soc. 126, 15036 (2004)
https://doi.org/10.1021/ja046432h
|
38 |
H. Bu, M. Zhao, Y. Xi, X. Wang, H. Peng, C. Wang, and X. Liu, Is yne-diamond a super-hard material? EPL 100, 56003 (2012)
https://doi.org/10.1209/0295-5075/100/56003
|
39 |
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49, 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
|
40 |
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Electronic structure of three-dimensional graphyne, Phys. Rev. B 62, 11146 (2000)
https://doi.org/10.1103/PhysRevB.62.11146
|
41 |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82, 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
|
42 |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183, 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
|
43 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
44 |
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
|
45 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
46 |
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
47 |
A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78, 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
|
48 |
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006)
https://doi.org/10.1063/1.2404663
|
49 |
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90, 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
|
50 |
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65, 349 (1952)
https://doi.org/10.1088/0370-1298/65/5/307
|
51 |
Q. Zhang, Q. Wei, H. Yan, Q. Fan, X. Zhu, J. Zhang, and D. Zhang, Mechanical and electronic properties of P42/mnmsilicon carbides, Z. Naturforsch. A 71, 387 (2016)
https://doi.org/10.1515/zna-2015-0539
|
52 |
S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)
https://doi.org/10.1080/14786440808520496
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|