Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 136106    https://doi.org/10.1007/s11467-018-0792-0
RESEARCH ARTICLE
Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings
Xiao-Ning Wang1, Jun-Zhe Lu1,2(), Heng-Jiang Zhu1,2(), Fang-Fang Li1, Miao-Miao Ma1, Gui-Ping Tan1
1. College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
2. Key Laboratory of Mineral Luminescence Materials and Microstructures of Xinjiang Uygur Autonomous Region, Urumqi 830054, China
 Download: PDF(6085 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on experimental results, we obtain five types of single-walled carbon nanotube (SWNT) clusters with different chirality indices and diameters using density functional theory (DFT). We then obtain the corresponding SWNTs by using periodic boundary conditions. Studies of the stability and electronic properties show that the stability of the novel SWNTs is independent of the chirality index and relates only to the tube diameter; larger diameters correspond to more stable SWNTs. The electronic properties all show metallic characteristics independent of the chirality indices and tube diameters, thereby promoting the application of metallic-type SWNTs.

Keywords four- and eight-membered rings      novel SWNTs      stability      electronic properties     
Corresponding Author(s): Jun-Zhe Lu,Heng-Jiang Zhu   
Issue Date: 08 June 2018
 Cite this article:   
Xiao-Ning Wang,Jun-Zhe Lu,Heng-Jiang Zhu, et al. Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings[J]. Front. Phys. , 2018, 13(4): 136106.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0792-0
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/136106
1 S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B Eng. 86, 95 (2016)
https://doi.org/10.1016/j.compositesb.2015.10.006
2 Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. R. Amer, and C. Zhou, Review of electronics based on singlewalled carbon nanotubes, Top. Curr. Chem. 375(5), 75 (2017)
https://doi.org/10.1007/s41061-017-0160-5
3 F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 510(7506), 522 (2014)
https://doi.org/10.1038/nature13434
4 Y. Tang, J. Lu, D. Liu, X. Yan, C. Yao, and H. Zhu, Structural derivative and electronic property of armchair carbon nanotubes from carbon clusters, Journal of Nanomaterials2017 (2017)
https://doi.org/10.1155/2017/7601869
5 J. Liu, J. Lu, X. Lin, Y. Tang, Y. Liu, T. Wang, and H. Zhu, The electronic properties of chiral carbon nanotubes, Comput. Mater. Sci. 129, 290 (2017)
https://doi.org/10.1016/j.commatsci.2016.12.035
6 Y. N. Liu, J. Z. Lu, H. J. Zhu, Y. C. Tang, X. Lin, J. Liu, and T. Wang, Derivative and electronic properties of zigzag carbon nanotubes, Acta Physica Sinica 66(9), 093601 (2017)
7 S. Liu and X. Guo, Functional single-walled carbon nanotube-based molecular devices, Acta Chimi. Sin. 71(04), 478 (2013)
https://doi.org/10.6023/A13010024
8 I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Carbon nanotubes: Sensor properties, a review, Modern Electronic Materials 2(4), 95 (2016)
https://doi.org/10.1016/j.moem.2017.02.002
9 M. Sheikhpour, A. Golbabaie, and A. Kasaeian, Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment, Mater. Sci. Eng. C 76(November), 1289 (2017)
https://doi.org/10.1016/j.msec.2017.02.132
10 M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Y. D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, The electronic properties of SWNTs intercalated by electron acceptors, Physica E 40(7), 2283 (2008)
https://doi.org/10.1016/j.physe.2007.10.070
11 T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Highyield separation of metallic and semiconducting singlewall carbon nanotubes by agarose gel electrophoresis, Appl. Phys. Express 1(11), 1140011 (2008)
12 F. Zhang, P. X. Hou, C. Liu, B. W. Wang, H. Jiang, M. L. Chen, D. M. Sun, J. C. Li, H. T. Cong, E. I. Kauppinen, and H. M. Cheng, Growth of semiconducting single-wall carbon nanotubes with a narrow bandgap distribution, Nat. Commun. 7, 1 (2016)
13 I. Yahya, F. Bonaccorso, S. K. Clowes, A. C. Ferrari, and S. R. P. Silva, Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography, Carbon 93, 574 (2015)
https://doi.org/10.1016/j.carbon.2015.05.036
14 H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel,J. Phys. Chem. C 114(20), 9270 (2010)
https://doi.org/10.1021/jp1017136
15 F. Yang, X. Wang, D. Zhang, K. Qi, J. Yang, Z. Xu, M. Li, X. Zhao, X. Bai, and Y. Li, Growing zigzag (16, 0) carbon nanotubes with structure-defined catalysts, J. Am. Chem. Soc. 137(27), 8688 (2015)
https://doi.org/10.1021/jacs.5b04403
16 F. Yang, X. Wang, M. Li, X. Liu, X. Zhao, D. Zhang, Y. Zhang, J. Yang, and Y. Li, Templated synthesis of single-walled carbon nanotubes with specific structure, Acc. Chem. Res. 49(4), 606 (2016)
https://doi.org/10.1021/acs.accounts.5b00485
17 H. Terrones, M. Terrones, E. Hernández, N. Grobert, J. C. Charlier, and P. M. Ajayan, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett. 84(8), 1716 (2000)
https://doi.org/10.1103/PhysRevLett.84.1716
18 L. P. Biró, G. I. Márk, Z. E. Horváth, K. Kertész, J. Gyulai, J. B. Nagy, and P. Lambin, Carbon nanoarchitectures containing non-hexagonal rings: “necklaces of pearls, Carbon 42(12–13), 2561 (2004)
https://doi.org/10.1016/j.carbon.2004.05.038
19 S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)
https://doi.org/10.1073/pnas.1416591112
20 C. Liu and H. M. Cheng, Controlled growth of semiconducting and metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 138(21), 6690 (2016)
https://doi.org/10.1021/jacs.6b00838
21 G. Algara-Siller, A. Santana, R. Onions, M. Suyetin, J. Biskupek, E. Bichoutskaia, and U. Kaiser, Electronbeam engineering of single-walled carbon nanotubes from bilayer graphene, Carbon 65, 80 (2013)
https://doi.org/10.1016/j.carbon.2013.07.107
22 T. Xu, Y. Zhou, X. Tan, K. Yin, L. He, F. Banhart, and L. Sun, Creating the smallest BN nanotube from bilayer H-BN, Adv. Funct. Mater. 27(19), 1603897 (2017)
https://doi.org/10.1002/adfm.201603897
23 M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, and D. Zhong, Graphene-like nanoribbons periodically embedded with four- and eight-membered rings, Nat. Commun. 8, 1 (2017)
https://doi.org/10.1038/ncomms14924
24 Y. L. Wang, K. H. Su, and J. P. Zhang, Studying of B, N, S, Si and P Doped (5; 5) carbon nanotubes by the density functional theory, Adv. Mat. Res.463–464, 1488 (2012)
https://doi.org/10.4028/www.scientific.net/AMR.463-464.1488
25 C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, and P. M. Deyà, Structural and energetic features of single-walled carbon nanotube junctions: A theoretical ab initio study, Chem. Phys. 303(3), 265 (2004)
https://doi.org/10.1016/j.chemphys.2004.06.022
26 J. Bai, X. C. Zeng, H. Tanaka, and J. Y. Zeng, Metallic single-walled silicon nanotubes, Proc. Natl. Acad. Sci. USA 101(9), 2664 (2004)
https://doi.org/10.1073/pnas.0308467101
27 L. Guo, X. Zheng, C. Liu, W. Zhou, and Z. Zeng, An ab initio study of cluster-assembled hydrogenated silicon nanotubes, Comput. Theor. Chem. 982, 17 (2012)
https://doi.org/10.1016/j.comptc.2011.11.053
28 M. S. Alam, F. Muttaqien, A. Setiadi, and M. Saito, First-principles calculations of hydrogen monomers and dimers adsorbed in graphene and carbon nanotubes, J. Phys. Soc. Jpn. 82(4), 1 (2013)
29 L. Qi, J. Y. Huang, J. Feng, and J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges, Carbon 48(8), 2354 (2010)
https://doi.org/10.1016/j.carbon.2010.03.018
30 J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions, Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)
https://doi.org/10.1073/pnas.0905193106
31 D. W. Boukhvalov and M. I. Katsnelson, Chemical functionalization of graphene, J. Phys.: Condens. Matter 21(34), 344205 (2009)
https://doi.org/10.1088/0953-8984/21/34/344205
32 A. R. Botello-Méndez, E. Cruz-Silva, F. López-Urías, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects, ACS Nano 3(11), 3606 (2009)
https://doi.org/10.1021/nn900614x
33 Q. Q. Dai, Y. F. Zhu, and Q. Jiang, Electronic and magnetic engineering in zigzag graphene nanoribbons having a topological line defect at different positions with or without strain, J. Phys. Chem. C 117(9), 4791 (2013)
https://doi.org/10.1021/jp3068987
34 X. Peng and R. Ahuja, Symmetry breaking induced bandgap in epitaxial graphene layers on SiC, Nano Lett. 8(12), 4464 (2008)
https://doi.org/10.1021/nl802409q
35 S. Reich, L. Li, and J. Robertson, Structure and formation energy of carbon nanotube caps, Phys. Rev. B 72(16), 1654231 (2005)
https://doi.org/10.1103/PhysRevB.72.165423
36 S. Singh and A. H. Romero, Giant tunable rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures, Phys. Rev. B 95(16), 165444 (2017)
https://doi.org/10.1103/PhysRevB.95.165444
[1] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[2] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows[J]. Front. Phys. , 2019, 14(4): 43602-.
[3] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[4] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[5] Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model[J]. Front. Phys. , 2017, 12(5): 126402-.
[6] L. P. Horwitz,A. Yahalom,J. Levitan,M. Lewkowicz. An underlying geometrical manifold for Hamiltonian mechanics[J]. Front. Phys. , 2017, 12(1): 124501-.
[7] Feng Chen,Ai-Guo Xu,Guang-Cai Zhang. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability[J]. Front. Phys. , 2016, 11(6): 114703-.
[8] Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb[J]. Front. Phys. , 2015, 10(4): 107101-.
[9] Chun Li, Zheng-Lin Jia, Dong-Cheng Mei. Effects of correlation time between noises on the noise enhanced stability phenomenon in an asymmetric bistable system[J]. Front. Phys. , 2015, 10(1): 100501-.
[10] Tai-Gang Liu, Wen-Qing Zhang, Yan-Li Li. First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters[J]. Front. Phys. , 2014, 9(2): 210-218.
[11] Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu. Simulation study on cavity growth in ductile metal materials under dynamic loading[J]. Front. Phys. , 2013, 8(4): 394-404.
[12] Ai-Guo Xu, Guang-Cai Zhang, Yan-Biao Gan, Feng Chen, Xi-Jun Yu. Lattice Boltzmann modeling and simulation of compressible flows[J]. Front. Phys. , 2012, 7(5): 582-600.
[13] Ke-ye ZHANG (张可烨), Lu ZHOU (周鲁), Guang-jiong DONG (董光烔), Wei-ping ZHANG (张卫平). Cavity optomechanics with cold atomic gas[J]. Front. Phys. , 2011, 6(3): 237-250.
[14] Mike GUIDRY, Yang SUN (孙扬), Cheng-li WU (吴成礼), . Generalizing the Cooper-pair instability to doped Mott insulators[J]. Front. Phys. , 2010, 5(2): 171-175.
[15] PANG Xiao-feng. Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II)[J]. Front. Phys. , 2008, 3(4): 457-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed