|
|
Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings |
Xiao-Ning Wang1, Jun-Zhe Lu1,2( ), Heng-Jiang Zhu1,2( ), Fang-Fang Li1, Miao-Miao Ma1, Gui-Ping Tan1 |
1. College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China 2. Key Laboratory of Mineral Luminescence Materials and Microstructures of Xinjiang Uygur Autonomous Region, Urumqi 830054, China |
|
|
Abstract Based on experimental results, we obtain five types of single-walled carbon nanotube (SWNT) clusters with different chirality indices and diameters using density functional theory (DFT). We then obtain the corresponding SWNTs by using periodic boundary conditions. Studies of the stability and electronic properties show that the stability of the novel SWNTs is independent of the chirality index and relates only to the tube diameter; larger diameters correspond to more stable SWNTs. The electronic properties all show metallic characteristics independent of the chirality indices and tube diameters, thereby promoting the application of metallic-type SWNTs.
|
Keywords
four- and eight-membered rings
novel SWNTs
stability
electronic properties
|
Corresponding Author(s):
Jun-Zhe Lu,Heng-Jiang Zhu
|
Issue Date: 08 June 2018
|
|
1 |
S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B Eng. 86, 95 (2016)
https://doi.org/10.1016/j.compositesb.2015.10.006
|
2 |
Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. R. Amer, and C. Zhou, Review of electronics based on singlewalled carbon nanotubes, Top. Curr. Chem. 375(5), 75 (2017)
https://doi.org/10.1007/s41061-017-0160-5
|
3 |
F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 510(7506), 522 (2014)
https://doi.org/10.1038/nature13434
|
4 |
Y. Tang, J. Lu, D. Liu, X. Yan, C. Yao, and H. Zhu, Structural derivative and electronic property of armchair carbon nanotubes from carbon clusters, Journal of Nanomaterials2017 (2017)
https://doi.org/10.1155/2017/7601869
|
5 |
J. Liu, J. Lu, X. Lin, Y. Tang, Y. Liu, T. Wang, and H. Zhu, The electronic properties of chiral carbon nanotubes, Comput. Mater. Sci. 129, 290 (2017)
https://doi.org/10.1016/j.commatsci.2016.12.035
|
6 |
Y. N. Liu, J. Z. Lu, H. J. Zhu, Y. C. Tang, X. Lin, J. Liu, and T. Wang, Derivative and electronic properties of zigzag carbon nanotubes, Acta Physica Sinica 66(9), 093601 (2017)
|
7 |
S. Liu and X. Guo, Functional single-walled carbon nanotube-based molecular devices, Acta Chimi. Sin. 71(04), 478 (2013)
https://doi.org/10.6023/A13010024
|
8 |
I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Carbon nanotubes: Sensor properties, a review, Modern Electronic Materials 2(4), 95 (2016)
https://doi.org/10.1016/j.moem.2017.02.002
|
9 |
M. Sheikhpour, A. Golbabaie, and A. Kasaeian, Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment, Mater. Sci. Eng. C 76(November), 1289 (2017)
https://doi.org/10.1016/j.msec.2017.02.132
|
10 |
M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Y. D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, The electronic properties of SWNTs intercalated by electron acceptors, Physica E 40(7), 2283 (2008)
https://doi.org/10.1016/j.physe.2007.10.070
|
11 |
T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Highyield separation of metallic and semiconducting singlewall carbon nanotubes by agarose gel electrophoresis, Appl. Phys. Express 1(11), 1140011 (2008)
|
12 |
F. Zhang, P. X. Hou, C. Liu, B. W. Wang, H. Jiang, M. L. Chen, D. M. Sun, J. C. Li, H. T. Cong, E. I. Kauppinen, and H. M. Cheng, Growth of semiconducting single-wall carbon nanotubes with a narrow bandgap distribution, Nat. Commun. 7, 1 (2016)
|
13 |
I. Yahya, F. Bonaccorso, S. K. Clowes, A. C. Ferrari, and S. R. P. Silva, Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography, Carbon 93, 574 (2015)
https://doi.org/10.1016/j.carbon.2015.05.036
|
14 |
H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel,J. Phys. Chem. C 114(20), 9270 (2010)
https://doi.org/10.1021/jp1017136
|
15 |
F. Yang, X. Wang, D. Zhang, K. Qi, J. Yang, Z. Xu, M. Li, X. Zhao, X. Bai, and Y. Li, Growing zigzag (16, 0) carbon nanotubes with structure-defined catalysts, J. Am. Chem. Soc. 137(27), 8688 (2015)
https://doi.org/10.1021/jacs.5b04403
|
16 |
F. Yang, X. Wang, M. Li, X. Liu, X. Zhao, D. Zhang, Y. Zhang, J. Yang, and Y. Li, Templated synthesis of single-walled carbon nanotubes with specific structure, Acc. Chem. Res. 49(4), 606 (2016)
https://doi.org/10.1021/acs.accounts.5b00485
|
17 |
H. Terrones, M. Terrones, E. Hernández, N. Grobert, J. C. Charlier, and P. M. Ajayan, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett. 84(8), 1716 (2000)
https://doi.org/10.1103/PhysRevLett.84.1716
|
18 |
L. P. Biró, G. I. Márk, Z. E. Horváth, K. Kertész, J. Gyulai, J. B. Nagy, and P. Lambin, Carbon nanoarchitectures containing non-hexagonal rings: “necklaces of pearls, Carbon 42(12–13), 2561 (2004)
https://doi.org/10.1016/j.carbon.2004.05.038
|
19 |
S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)
https://doi.org/10.1073/pnas.1416591112
|
20 |
C. Liu and H. M. Cheng, Controlled growth of semiconducting and metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 138(21), 6690 (2016)
https://doi.org/10.1021/jacs.6b00838
|
21 |
G. Algara-Siller, A. Santana, R. Onions, M. Suyetin, J. Biskupek, E. Bichoutskaia, and U. Kaiser, Electronbeam engineering of single-walled carbon nanotubes from bilayer graphene, Carbon 65, 80 (2013)
https://doi.org/10.1016/j.carbon.2013.07.107
|
22 |
T. Xu, Y. Zhou, X. Tan, K. Yin, L. He, F. Banhart, and L. Sun, Creating the smallest BN nanotube from bilayer H-BN, Adv. Funct. Mater. 27(19), 1603897 (2017)
https://doi.org/10.1002/adfm.201603897
|
23 |
M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, and D. Zhong, Graphene-like nanoribbons periodically embedded with four- and eight-membered rings, Nat. Commun. 8, 1 (2017)
https://doi.org/10.1038/ncomms14924
|
24 |
Y. L. Wang, K. H. Su, and J. P. Zhang, Studying of B, N, S, Si and P Doped (5; 5) carbon nanotubes by the density functional theory, Adv. Mat. Res.463–464, 1488 (2012)
https://doi.org/10.4028/www.scientific.net/AMR.463-464.1488
|
25 |
C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, and P. M. Deyà, Structural and energetic features of single-walled carbon nanotube junctions: A theoretical ab initio study, Chem. Phys. 303(3), 265 (2004)
https://doi.org/10.1016/j.chemphys.2004.06.022
|
26 |
J. Bai, X. C. Zeng, H. Tanaka, and J. Y. Zeng, Metallic single-walled silicon nanotubes, Proc. Natl. Acad. Sci. USA 101(9), 2664 (2004)
https://doi.org/10.1073/pnas.0308467101
|
27 |
L. Guo, X. Zheng, C. Liu, W. Zhou, and Z. Zeng, An ab initio study of cluster-assembled hydrogenated silicon nanotubes, Comput. Theor. Chem. 982, 17 (2012)
https://doi.org/10.1016/j.comptc.2011.11.053
|
28 |
M. S. Alam, F. Muttaqien, A. Setiadi, and M. Saito, First-principles calculations of hydrogen monomers and dimers adsorbed in graphene and carbon nanotubes, J. Phys. Soc. Jpn. 82(4), 1 (2013)
|
29 |
L. Qi, J. Y. Huang, J. Feng, and J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges, Carbon 48(8), 2354 (2010)
https://doi.org/10.1016/j.carbon.2010.03.018
|
30 |
J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions, Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)
https://doi.org/10.1073/pnas.0905193106
|
31 |
D. W. Boukhvalov and M. I. Katsnelson, Chemical functionalization of graphene, J. Phys.: Condens. Matter 21(34), 344205 (2009)
https://doi.org/10.1088/0953-8984/21/34/344205
|
32 |
A. R. Botello-Méndez, E. Cruz-Silva, F. López-Urías, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects, ACS Nano 3(11), 3606 (2009)
https://doi.org/10.1021/nn900614x
|
33 |
Q. Q. Dai, Y. F. Zhu, and Q. Jiang, Electronic and magnetic engineering in zigzag graphene nanoribbons having a topological line defect at different positions with or without strain, J. Phys. Chem. C 117(9), 4791 (2013)
https://doi.org/10.1021/jp3068987
|
34 |
X. Peng and R. Ahuja, Symmetry breaking induced bandgap in epitaxial graphene layers on SiC, Nano Lett. 8(12), 4464 (2008)
https://doi.org/10.1021/nl802409q
|
35 |
S. Reich, L. Li, and J. Robertson, Structure and formation energy of carbon nanotube caps, Phys. Rev. B 72(16), 1654231 (2005)
https://doi.org/10.1103/PhysRevB.72.165423
|
36 |
S. Singh and A. H. Romero, Giant tunable rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures, Phys. Rev. B 95(16), 165444 (2017)
https://doi.org/10.1103/PhysRevB.95.165444
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|