Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (5) : 126402    https://doi.org/10.1007/s11467-016-0632-z
RESEARCH ARTICLE
Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model
Fan Zhong()
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(1360 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar φ4 model, below its critical temperature and near the instability points. Finitetime scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang–Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.

Keywords first-order phase transitions      renormalization group theory      φ3 theory      scaling and universality      instability exponents      Yang–Lee edge singularity      finite-time scaling      corrections to scaling      scalar model      dynamics      hysteresis     
Corresponding Author(s): Fan Zhong   
Issue Date: 03 January 2017
 Cite this article:   
Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model[J]. Front. Phys. , 2017, 12(5): 126402.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0632-z
https://academic.hep.com.cn/fop/EN/Y2017/V12/I5/126402
1 P. Ehrenfest, Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Comm. Kamerlingh Onnes Lab., University of Leiden, Suppl. 75b (1933) [Proc. Acad. Sci. Amsterdam 36, 153 (1933)]
2 M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
https://doi.org/10.1088/0034-4885/30/2/306
3 T. Andrews, The Bakerian lecture: On the continuity of the gaseous and liquid states of matter, Philos. Trans. R. Soc. Lond. 159(0), 575 (1869)
https://doi.org/10.1098/rstl.1869.0021
4 K. G. Wilson, Renormalization group and critical phenomena (I), Phys. Rev. B 4(9), 3174 (1971)
https://doi.org/10.1103/PhysRevB.4.3174
5 K. G. Wilson, Renormalization group and critical phenomena (II): Phase-space cell analysis of critical behavior, Phys. Rev. B 4(9), 3184 (1971)
https://doi.org/10.1103/PhysRevB.4.3184
6 K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. C 12(2), 75 (1974)
https://doi.org/10.1016/0370-1573(74)90023-4
7 M. E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46(4), 597 (1974)
https://doi.org/10.1103/RevModPhys.46.597
8 H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71(2), S358 (1999)
https://doi.org/10.1103/RevModPhys.71.S358
9 For a recent review, see, M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Critical phenomena in microgravity: Past, present, and future, Rev. Mod. Phys. 79(1), 1 (2007)
https://doi.org/10.1103/RevModPhys.79.1
10 J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
https://doi.org/10.1007/BFb0035331
11 J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
12 K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
https://doi.org/10.1088/0034-4885/50/7/001
13 P. G. Debenedetti, Metastable Liquids, Princeton: Princeton University, 1996
14 J. van der Waals, On the continuity of the gaseous and liquid state, Thesis, Leiden, 1873 (unpublished)
15 J. C. Maxwell, Scientific Papers, New York: Dover, 1965, p. 425
16 J. W. Gibbs, The Collective Works of J. Willard Gibbs, Vol. 1, New York: Longman, 1931
17 J. D. Gunton, Homogeneous nucleation, J. Stat. Phys. 95(5/6), 903 (1999)
https://doi.org/10.1023/A:1004598332758
18 D. W. Oxtoby, Nucleation of first-order phase transitions, Acc. Chem. Res. 31(2), 91 (1998)
https://doi.org/10.1021/ar9702278
19 R. B. Sear, Nucleation: Theory and applications to protein solutions and colloidal suspensions, J. Phys.: Condens. Matter 19, 033101 (2007)
https://doi.org/10.1088/0953-8984/19/3/033101
20 K. Binder and P. Fratzl, in: Phase Transformations in Materials, <Eds/>. G. Kostorz, Weinheim: Wiley, 2001
21 J. S. Langer, M. Baron, and H. D. Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11(4), 1417 (1975)
https://doi.org/10.1103/PhysRevA.11.1417
22 K. Binder, “Clusters” in the Ising model, metastable states and essential singularity, Ann. Phys. 98(2), 390 (1976)
https://doi.org/10.1016/0003-4916(76)90159-7
23 K. Binder and D. Stauffer, Statistical theory of nucleation, condensation and coagulation, Adv. Phys. 25(4), 343 (1976)
https://doi.org/10.1080/00018737600101402
24 F. Zhong, Instability points and spinodal points, 2010 (unpublished)
25 B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory, Phys. Rev. Lett. 35(8), 477 (1975)
https://doi.org/10.1103/PhysRevLett.35.477
26 M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26(5), 2507 (1982)
https://doi.org/10.1103/PhysRevB.26.2507
27 A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994), reprinted as Adv. Phys. 51, 481 (2002), and references therein
28 J. Marro, J. L. Lebowitz, and M. H. Kalos, Computer simulation of the time evolution of a quenched model alloy in the nucleation region, Phys. Rev. Lett. 43(4), 282 (1979)
https://doi.org/10.1103/PhysRevLett.43.282
29 P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
https://doi.org/10.1103/RevModPhys.49.435
30 J. X. Zhang and X. J. Li, A new method for interface dynamic investigation in solid state phase transformations, Acta Sci. Nat. Uni. Sun. 2, 45 (1985)
31 M. Rao, H. R. Krishnamurthy, and R. Pandit, Hysteresis in model spin systems, J. Phys.: Condens. Matter 1(45), 9061 (1989)
https://doi.org/10.1088/0953-8984/1/45/030
32 M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hysteresis in two model spin systems, Phys. Rev. B 42(1), 856 (1990)
https://doi.org/10.1103/PhysRevB.42.856
33 F. Zhong, J. X. Zhang, and G. G. Siu, Dynamic scaling of hysteresis in a linearly driven system, J. Phys.: Condens. Matter 6(38), 7785 (1994)
https://doi.org/10.1088/0953-8984/6/38/016
34 F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
https://doi.org/10.1103/PhysRevE.51.2898
35 F. Zhong, J. X. Zhang, and X. Liu, Scaling of hysteresis in the Ising model and cell-dynamical systems in a linearly varying external field, Phys. Rev. E 52(2), 1399 (1995)
https://doi.org/10.1103/PhysRevE.52.1399
36 J. X. Zhang, P. C. W. Fung, and W. G. Zeng, Dissipation function of the first-order phase transformation in solids via internal-friction measurements, Phys. Rev. B 52(1), 268 (1995), and references therein
https://doi.org/10.1103/PhysRevB.52.268
37 J. X. Zhang, Z. H. Yang, and P. C. W. Fung, Dissipation function of the first-order phase transformation in VO2 ceramics by internal-friction measurements, Phys. Rev. B 52(1), 278 (1995)
https://doi.org/10.1103/PhysRevB.52.278
38 J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids, Solid State Commun. 97(10), 847 (1996)
https://doi.org/10.1016/0038-1098(95)00781-4
39 K. Chakrabarti and M. Acharyya, Dynamic transitions and hysteresis, Rev. Mod. Phys. 71(3), 847 (1999)
https://doi.org/10.1103/RevModPhys.71.847
40 F. Zhong and J. X. Zhang, Renormalization group theory of hysteresis, Phys. Rev. Lett. 75(10), 2027 (1995)
https://doi.org/10.1103/PhysRevLett.75.2027
41 F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model, Phys. Rev. B 66, 060401(R) (2002)
42 F. Zhong and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
https://doi.org/10.1103/PhysRevLett.95.175701
43 M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
https://doi.org/10.1103/PhysRevLett.40.1610
44 J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
https://doi.org/10.1016/0003-4916(67)90200-X
45 O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals–Maxwell theory, J. Stat. Phys. 3(2), 211 (1971)
https://doi.org/10.1007/BF01019851
46 J. S. Langer, Metastable states, Physica 73(1), 61 (1974)
https://doi.org/10.1016/0031-8914(74)90226-2
47 K. Binder, Double-well thermodynamic potentials and spinodal curves: How real are they? Philos. Mag. Lett. 87(11), 799 (2007)
https://doi.org/10.1080/09500830701496560
48 J. D. Gunton and M. C. Yalabik, Renormalizationgroup analysis of the mean-field theory of metastability: A spinodal fixed point, Phys. Rev. B 18(11), 6199 (1978)
https://doi.org/10.1103/PhysRevB.18.6199
49 W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
https://doi.org/10.1103/PhysRevB.28.445
50 C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
https://doi.org/10.1103/PhysRevB.29.2698
51 H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, <Eds/>. C. P. Enz, Berlin: Springer, 1979
https://doi.org/10.1007/3-540-09523-3_2
52 H. K. Janssen, in: From Phase Transition to Chaos, eds. G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992, and references therein
53 J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd<Eds/>., Oxford: Clarendon, 1996
54 A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
https://doi.org/10.1201/9780203483565
55 U. C. Täuber, Critical Dynamics,
56 R. Folk and G. Moser, Critical dynamics: A fieldtheoretical approach, J. Phys. A 39(24), R207 (2006)
https://doi.org/10.1088/0305-4470/39/24/R01
57 P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
https://doi.org/10.1103/PhysRevA.8.423
58 R. Bausch, J. K. Janssen, and H. Wagner, Renormalized field theory of critical dynamics, Z. Phys. B 24(1), 113 (1976)
https://doi.org/10.1007/BF01312880
59 U. Deker and F. Haake, Fluctuation-dissipation theorems for classical processes, Phys. Rev. A 11(6), 2043 (1975)
https://doi.org/10.1103/PhysRevA.11.2043
60 C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
https://doi.org/10.1103/PhysRevB.18.353
61 Y. Saito, Pseudocritical phenomena near the spinodal point, Prog. Theor. Phys. 59(2), 375 (1978)
https://doi.org/10.1143/PTP.59.375
62 D. J. Amit, Renormalization of the Potts model, J. Phys. A 9(9), 1441 (1976)
https://doi.org/10.1088/0305-4470/9/9/006
63 A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems, Phys. Rev. Lett. 35(6), 327 (1975)
https://doi.org/10.1103/PhysRevLett.35.327
64 S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
https://doi.org/10.1088/1367-2630/12/4/043036
65 F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in: Applications of Monte Carlo Method in Science and Engineering,<Eds/>. S. Mordechai, Rijeka: Intech, 2011. Available at
66 F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
https://doi.org/10.1103/PhysRevE.73.047102
67 P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
https://doi.org/10.1103/PhysRevLett.65.1873
68 V. L. Ginzburg, Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials, Sov. Phys. Solid State 2, 1824 (1960)
69 D. J. Amit, The Ginzburg criterion-rationalized, J. Phys. C: Solid State Phys. 7, 3369 (1974)
https://doi.org/10.1088/0022-3719/7/18/020
70 K. Binder, Nucleation barriers, spinodals, and the Ginzburg criterion, Phys. Rev. A 29(1), 341 (1984)
https://doi.org/10.1103/PhysRevA.29.341
71 E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in: Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green, Vol. 6, New York: Academic, 1976
72 D. J. Amit and V. Martin-Mayer, Field Theory, the Renormalization Group, and Critical Phenomena, 3rd <Eds/>., Singapore: World Scientific, 2005
https://doi.org/10.1142/5715
73 K. Symanzik, Massless φ4 theory in 4-εdimensions theory in 4-ε dimensions, Lett. Nuovo Cimento 8(13), 771 (1973)
https://doi.org/10.1007/BF02725853
74 G. Parisi, Field-theoretic approach to second-order phase transitions in two- and three-dimensional systems, J. Stat. Phys. 23(1), 49 (1980)
https://doi.org/10.1007/BF01014429
75 M. C. Bergère and F. David, Nonanalyticity of the perturbative expansion for super-renormalizable massless field theories, Ann. Phys. 142(2), 416 (1982)
https://doi.org/10.1016/0003-4916(82)90078-1
76 C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d= 3: The disordered-phase case, Phys. Rev. B 32(11), 7209 (1985)
https://doi.org/10.1103/PhysRevB.32.7209
77 C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d= 3 (II): The ordered-phase case, Phys. Rev. B 35(7), 3585 (1987)
https://doi.org/10.1103/PhysRevB.35.3585
78 R. Schloms and V. Dohm, Minimal renormalization without ε-expansion: Critical behavior in three dimensions, Nucl. Phys. B 328(3), 639 (1989)
https://doi.org/10.1016/0550-3213(89)90223-X
79 G. ’t Hooft and H. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
https://doi.org/10.1016/0550-3213(72)90279-9
80 S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
https://doi.org/10.1007/s10955-011-0225-8
81 H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time scaling behaviour of critical relaxation processes, Z. Phys. B 73(4), 539 (1989)
https://doi.org/10.1007/BF01319383
82 F. W. Wegner, Corrections to scaling laws, Phys. Rev. B 5(11), 4529 (1972)
https://doi.org/10.1103/PhysRevB.5.4529
83 P. G. de Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A 30(8), 454 (1969)
https://doi.org/10.1016/0375-9601(69)90240-0
84 R. G. Priest and T. C. Lubensky, Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13(9), 4159 (1976)
https://doi.org/10.1103/PhysRevB.13.4159
85 R. B. Potts and C. Domb, Some generalized orderdisorder transformations, Proc. Camb. Philos. Soc. 48(01), 106 (1952)
https://doi.org/10.1017/S0305004100027419
86 R. K. P. Zia and D. J. Wallace, Critical behavior of the continuous n-component Potts model, J. Phys. A 8(9), 1495 (1975)
https://doi.org/10.1088/0305-4470/8/9/019
87 C. M. Fortuin and P. W. Kasteleyn, On the randomcluster model, Physica 57(4), 536 (1972)
https://doi.org/10.1016/0031-8914(72)90045-6
88 S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5(5), 965 (1975)
https://doi.org/10.1088/0305-4608/5/5/017
89 A. B. Harris, T. C. Lubensky, and J.-H. Chen, Critical properties of spin-glasses, Phys. Rev. Lett. 36, 415 (1976)
https://doi.org/10.1103/PhysRevLett.36.415
90 G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663 (2004)
https://doi.org/10.1103/RevModPhys.76.663
91 G. Ódor, Universality in Nonequilibrium Lattice Systems, Singapore: World Scientific, 2008
https://doi.org/10.1142/6813
92 H. K. Janssen and U. C. Täuber, The field theory approach to percolation processes, Ann. Phys. 315(1), 147 (2005)
https://doi.org/10.1016/j.aop.2004.09.011
93 H. D. I. Abarbanel, J. D. Bronzan, R. L. Sugar, and A. R. White, Reggeon field theory: Formulation and use, Phys. Rep. 21(3), 119 (1975)
https://doi.org/10.1016/0370-1573(75)90034-4
94 M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37(3), 255 (1978)
https://doi.org/10.1016/0370-1573(78)90098-4
95 J. L. Cardy and R. L. Sugar, Directed percolation and Reggeon field theory, J. Phys. A 13(12), L423 (1980)
https://doi.org/10.1088/0305-4470/13/12/002
96 G. Parisi and N. Sourlas, Critical behavior of branched polymers and the Lee–Yang edge singularity, Phys. Rev. Lett. 46(14), 871 (1981)
https://doi.org/10.1103/PhysRevLett.46.871
97 T. C. Lubensky and A. J. McKane, Anderson localization, branched polymers and the Yang–Lee edge singularity, J. Phys. Lett. 42(14), 331 (1981)
https://doi.org/10.1051/jphyslet:019810042014033100
98 J. L. Cardy, Directed lattice animals and the Lee–Yang edge singularity, J. Phys. A 15(11), L593 (1982)
https://doi.org/10.1088/0305-4470/15/11/004
99 A. J. McKane, D. J. Wallace, and R. K. P. Zia, Models for strong interactions in 6-∈ dimensions, Phys. Lett. B 65(2), 171 (1976)
https://doi.org/10.1016/0370-2693(76)90024-1
100 O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ∈3 for φ3 models of critical phenomena in 6-∈ dimensions, J. Phys. Math. Gen. 13(7), L247 (1980)
https://doi.org/10.1088/0305-4470/13/7/006
101 O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
https://doi.org/10.1088/0305-4470/14/9/034
102 A. J. McKane, Vacuum instability in scalar field theories, Nucl. Phys. B 152(1), 166 (1979)
https://doi.org/10.1016/0550-3213(79)90086-5
103 J. E. Kirkham and D. J. Wallace, Comments on the field-theoretic formulation of the Yang–Lee edge singularity, J. Phys. A 12(2), L47 (1979)
https://doi.org/10.1088/0305-4470/12/2/001
104 A. Houghton, J. S. Reeve, and D. J. Wallace, Highorder behavior in φ3 field theories and the percolation problem, Phys. Rev. B 17(7), 2956 (1978)
https://doi.org/10.1103/PhysRevB.17.2956
105 D. J. Amit, D. J. Wallace, and R. K. P. Zia, Universality in the percolation problem — Anomalous dimensions of φ4 operators, Phys. Rev. B 15(10), 4657 (1977)
https://doi.org/10.1103/PhysRevB.15.4657
106 D. J. Elderfield and A. J. McKane, Relevance of φ4 operators in the Edwards–Anderson model, Phys. Rev. B 18(7), 3730 (1978)
https://doi.org/10.1103/PhysRevB.18.3730
107 C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions (I): Theory of condensation, Phys. Rev. 87(3), 404 (1952)
https://doi.org/10.1103/PhysRev.87.404
108 T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model, Phys. Rev. 87(3), 410 (1952)
https://doi.org/10.1103/PhysRev.87.410
109 P. J. Kortman and R. B. Griffiths, Density of zeros on the Lee–Yang circle for two Ising ferromagnets, Phys. Rev. Lett. 27(21), 1439 (1971)
https://doi.org/10.1103/PhysRevLett.27.1439
110 D. A. Kurtze and M. E. Fisher, Yang–Lee edge singularities at high temperatures, Phys. Rev. B 20(7), 2785 (1979)
https://doi.org/10.1103/PhysRevB.20.2785
111 N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. B 41(1), 55 (1981)
https://doi.org/10.1007/BF01301410
112 J. Reeve, A. J. Guttmann, and B. Keck, Critical behavior of φ3 field theories in three dimensions, Phys. Rev. B 26(7), 3923 (1982)
https://doi.org/10.1103/PhysRevB.26.3923
113 See, e.g., L. H. Ryder, Quantum Field Theory, 2nd<Eds/>., Cambridge: Cambridge University Press, 2004
114 F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
https://doi.org/10.1103/PhysRevE.86.022104
[1] Zhan-Chun Tu. Abstract models for heat engines[J]. Front. Phys. , 2021, 16(3): 33202-.
[2] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[3] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[4] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[5] Michael L. Goodman, Chiman Kwan, Bulent Ayhan, Eric L. Shang. A new approach to solar flare prediction[J]. Front. Phys. , 2020, 15(3): 34601-.
[6] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[7] Zbigniew Tylczyński. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers[J]. Front. Phys. , 2019, 14(6): 63301-.
[8] Yang Gao. Semiclassical dynamics and nonlinear charge current[J]. Front. Phys. , 2019, 14(3): 33404-.
[9] T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition[J]. Front. Phys. , 2019, 14(2): 23601-.
[10] Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes[J]. Front. Phys. , 2018, 13(5): 138206-.
[11] Rui Wang, Li-Mei Xu, Feng Wang. Molecular-scale processes affecting growth rates of ice at moderate supercooling[J]. Front. Phys. , 2018, 13(5): 138116-.
[12] Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation[J]. Front. Phys. , 2018, 13(5): 134209-.
[13] Ying-Ting Lin, Xiao-Pu Han, Bo-Kui Chen, Jun Zhou, Bing-Hong Wang. Evolution of innovative behaviors on scale-free networks[J]. Front. Phys. , 2018, 13(4): 130308-.
[14] Hui-Li Wang (王会丽), Zhen-Peng Hu (胡振芃), Hui Li (李晖). Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations[J]. Front. Phys. , 2018, 13(3): 138107-.
[15] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed