|
|
Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model |
Fan Zhong( ) |
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar φ4 model, below its critical temperature and near the instability points. Finitetime scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang–Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.
|
Keywords
first-order phase transitions
renormalization group theory
φ3 theory
scaling and universality
instability exponents
Yang–Lee edge singularity
finite-time scaling
corrections to scaling
scalar model
dynamics
hysteresis
|
Corresponding Author(s):
Fan Zhong
|
Issue Date: 03 January 2017
|
|
1 |
P. Ehrenfest, Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Comm. Kamerlingh Onnes Lab., University of Leiden, Suppl. 75b (1933) [Proc. Acad. Sci. Amsterdam 36, 153 (1933)]
|
2 |
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
https://doi.org/10.1088/0034-4885/30/2/306
|
3 |
T. Andrews, The Bakerian lecture: On the continuity of the gaseous and liquid states of matter, Philos. Trans. R. Soc. Lond. 159(0), 575 (1869)
https://doi.org/10.1098/rstl.1869.0021
|
4 |
K. G. Wilson, Renormalization group and critical phenomena (I), Phys. Rev. B 4(9), 3174 (1971)
https://doi.org/10.1103/PhysRevB.4.3174
|
5 |
K. G. Wilson, Renormalization group and critical phenomena (II): Phase-space cell analysis of critical behavior, Phys. Rev. B 4(9), 3184 (1971)
https://doi.org/10.1103/PhysRevB.4.3184
|
6 |
K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. C 12(2), 75 (1974)
https://doi.org/10.1016/0370-1573(74)90023-4
|
7 |
M. E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46(4), 597 (1974)
https://doi.org/10.1103/RevModPhys.46.597
|
8 |
H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71(2), S358 (1999)
https://doi.org/10.1103/RevModPhys.71.S358
|
9 |
For a recent review, see, M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Critical phenomena in microgravity: Past, present, and future, Rev. Mod. Phys. 79(1), 1 (2007)
https://doi.org/10.1103/RevModPhys.79.1
|
10 |
J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
https://doi.org/10.1007/BFb0035331
|
11 |
J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
|
12 |
K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
https://doi.org/10.1088/0034-4885/50/7/001
|
13 |
P. G. Debenedetti, Metastable Liquids, Princeton: Princeton University, 1996
|
14 |
J. van der Waals, On the continuity of the gaseous and liquid state, Thesis, Leiden, 1873 (unpublished)
|
15 |
J. C. Maxwell, Scientific Papers, New York: Dover, 1965, p. 425
|
16 |
J. W. Gibbs, The Collective Works of J. Willard Gibbs, Vol. 1, New York: Longman, 1931
|
17 |
J. D. Gunton, Homogeneous nucleation, J. Stat. Phys. 95(5/6), 903 (1999)
https://doi.org/10.1023/A:1004598332758
|
18 |
D. W. Oxtoby, Nucleation of first-order phase transitions, Acc. Chem. Res. 31(2), 91 (1998)
https://doi.org/10.1021/ar9702278
|
19 |
R. B. Sear, Nucleation: Theory and applications to protein solutions and colloidal suspensions, J. Phys.: Condens. Matter 19, 033101 (2007)
https://doi.org/10.1088/0953-8984/19/3/033101
|
20 |
K. Binder and P. Fratzl, in: Phase Transformations in Materials, <Eds/>. G. Kostorz, Weinheim: Wiley, 2001
|
21 |
J. S. Langer, M. Baron, and H. D. Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11(4), 1417 (1975)
https://doi.org/10.1103/PhysRevA.11.1417
|
22 |
K. Binder, “Clusters” in the Ising model, metastable states and essential singularity, Ann. Phys. 98(2), 390 (1976)
https://doi.org/10.1016/0003-4916(76)90159-7
|
23 |
K. Binder and D. Stauffer, Statistical theory of nucleation, condensation and coagulation, Adv. Phys. 25(4), 343 (1976)
https://doi.org/10.1080/00018737600101402
|
24 |
F. Zhong, Instability points and spinodal points, 2010 (unpublished)
|
25 |
B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory, Phys. Rev. Lett. 35(8), 477 (1975)
https://doi.org/10.1103/PhysRevLett.35.477
|
26 |
M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26(5), 2507 (1982)
https://doi.org/10.1103/PhysRevB.26.2507
|
27 |
A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994), reprinted as Adv. Phys. 51, 481 (2002), and references therein
|
28 |
J. Marro, J. L. Lebowitz, and M. H. Kalos, Computer simulation of the time evolution of a quenched model alloy in the nucleation region, Phys. Rev. Lett. 43(4), 282 (1979)
https://doi.org/10.1103/PhysRevLett.43.282
|
29 |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
https://doi.org/10.1103/RevModPhys.49.435
|
30 |
J. X. Zhang and X. J. Li, A new method for interface dynamic investigation in solid state phase transformations, Acta Sci. Nat. Uni. Sun. 2, 45 (1985)
|
31 |
M. Rao, H. R. Krishnamurthy, and R. Pandit, Hysteresis in model spin systems, J. Phys.: Condens. Matter 1(45), 9061 (1989)
https://doi.org/10.1088/0953-8984/1/45/030
|
32 |
M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hysteresis in two model spin systems, Phys. Rev. B 42(1), 856 (1990)
https://doi.org/10.1103/PhysRevB.42.856
|
33 |
F. Zhong, J. X. Zhang, and G. G. Siu, Dynamic scaling of hysteresis in a linearly driven system, J. Phys.: Condens. Matter 6(38), 7785 (1994)
https://doi.org/10.1088/0953-8984/6/38/016
|
34 |
F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
https://doi.org/10.1103/PhysRevE.51.2898
|
35 |
F. Zhong, J. X. Zhang, and X. Liu, Scaling of hysteresis in the Ising model and cell-dynamical systems in a linearly varying external field, Phys. Rev. E 52(2), 1399 (1995)
https://doi.org/10.1103/PhysRevE.52.1399
|
36 |
J. X. Zhang, P. C. W. Fung, and W. G. Zeng, Dissipation function of the first-order phase transformation in solids via internal-friction measurements, Phys. Rev. B 52(1), 268 (1995), and references therein
https://doi.org/10.1103/PhysRevB.52.268
|
37 |
J. X. Zhang, Z. H. Yang, and P. C. W. Fung, Dissipation function of the first-order phase transformation in VO2 ceramics by internal-friction measurements, Phys. Rev. B 52(1), 278 (1995)
https://doi.org/10.1103/PhysRevB.52.278
|
38 |
J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids, Solid State Commun. 97(10), 847 (1996)
https://doi.org/10.1016/0038-1098(95)00781-4
|
39 |
K. Chakrabarti and M. Acharyya, Dynamic transitions and hysteresis, Rev. Mod. Phys. 71(3), 847 (1999)
https://doi.org/10.1103/RevModPhys.71.847
|
40 |
F. Zhong and J. X. Zhang, Renormalization group theory of hysteresis, Phys. Rev. Lett. 75(10), 2027 (1995)
https://doi.org/10.1103/PhysRevLett.75.2027
|
41 |
F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model, Phys. Rev. B 66, 060401(R) (2002)
|
42 |
F. Zhong and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
https://doi.org/10.1103/PhysRevLett.95.175701
|
43 |
M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
https://doi.org/10.1103/PhysRevLett.40.1610
|
44 |
J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
https://doi.org/10.1016/0003-4916(67)90200-X
|
45 |
O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals–Maxwell theory, J. Stat. Phys. 3(2), 211 (1971)
https://doi.org/10.1007/BF01019851
|
46 |
J. S. Langer, Metastable states, Physica 73(1), 61 (1974)
https://doi.org/10.1016/0031-8914(74)90226-2
|
47 |
K. Binder, Double-well thermodynamic potentials and spinodal curves: How real are they? Philos. Mag. Lett. 87(11), 799 (2007)
https://doi.org/10.1080/09500830701496560
|
48 |
J. D. Gunton and M. C. Yalabik, Renormalizationgroup analysis of the mean-field theory of metastability: A spinodal fixed point, Phys. Rev. B 18(11), 6199 (1978)
https://doi.org/10.1103/PhysRevB.18.6199
|
49 |
W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
https://doi.org/10.1103/PhysRevB.28.445
|
50 |
C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
https://doi.org/10.1103/PhysRevB.29.2698
|
51 |
H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, <Eds/>. C. P. Enz, Berlin: Springer, 1979
https://doi.org/10.1007/3-540-09523-3_2
|
52 |
H. K. Janssen, in: From Phase Transition to Chaos, eds. G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992, and references therein
|
53 |
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd<Eds/>., Oxford: Clarendon, 1996
|
54 |
A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
https://doi.org/10.1201/9780203483565
|
55 |
U. C. Täuber, Critical Dynamics,
|
56 |
R. Folk and G. Moser, Critical dynamics: A fieldtheoretical approach, J. Phys. A 39(24), R207 (2006)
https://doi.org/10.1088/0305-4470/39/24/R01
|
57 |
P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
https://doi.org/10.1103/PhysRevA.8.423
|
58 |
R. Bausch, J. K. Janssen, and H. Wagner, Renormalized field theory of critical dynamics, Z. Phys. B 24(1), 113 (1976)
https://doi.org/10.1007/BF01312880
|
59 |
U. Deker and F. Haake, Fluctuation-dissipation theorems for classical processes, Phys. Rev. A 11(6), 2043 (1975)
https://doi.org/10.1103/PhysRevA.11.2043
|
60 |
C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
https://doi.org/10.1103/PhysRevB.18.353
|
61 |
Y. Saito, Pseudocritical phenomena near the spinodal point, Prog. Theor. Phys. 59(2), 375 (1978)
https://doi.org/10.1143/PTP.59.375
|
62 |
D. J. Amit, Renormalization of the Potts model, J. Phys. A 9(9), 1441 (1976)
https://doi.org/10.1088/0305-4470/9/9/006
|
63 |
A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems, Phys. Rev. Lett. 35(6), 327 (1975)
https://doi.org/10.1103/PhysRevLett.35.327
|
64 |
S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
https://doi.org/10.1088/1367-2630/12/4/043036
|
65 |
F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in: Applications of Monte Carlo Method in Science and Engineering,<Eds/>. S. Mordechai, Rijeka: Intech, 2011. Available at
|
66 |
F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
https://doi.org/10.1103/PhysRevE.73.047102
|
67 |
P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
https://doi.org/10.1103/PhysRevLett.65.1873
|
68 |
V. L. Ginzburg, Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials, Sov. Phys. Solid State 2, 1824 (1960)
|
69 |
D. J. Amit, The Ginzburg criterion-rationalized, J. Phys. C: Solid State Phys. 7, 3369 (1974)
https://doi.org/10.1088/0022-3719/7/18/020
|
70 |
K. Binder, Nucleation barriers, spinodals, and the Ginzburg criterion, Phys. Rev. A 29(1), 341 (1984)
https://doi.org/10.1103/PhysRevA.29.341
|
71 |
E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in: Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green, Vol. 6, New York: Academic, 1976
|
72 |
D. J. Amit and V. Martin-Mayer, Field Theory, the Renormalization Group, and Critical Phenomena, 3rd <Eds/>., Singapore: World Scientific, 2005
https://doi.org/10.1142/5715
|
73 |
K. Symanzik, Massless φ4 theory in 4-εdimensions theory in 4-ε dimensions, Lett. Nuovo Cimento 8(13), 771 (1973)
https://doi.org/10.1007/BF02725853
|
74 |
G. Parisi, Field-theoretic approach to second-order phase transitions in two- and three-dimensional systems, J. Stat. Phys. 23(1), 49 (1980)
https://doi.org/10.1007/BF01014429
|
75 |
M. C. Bergère and F. David, Nonanalyticity of the perturbative expansion for super-renormalizable massless field theories, Ann. Phys. 142(2), 416 (1982)
https://doi.org/10.1016/0003-4916(82)90078-1
|
76 |
C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d= 3: The disordered-phase case, Phys. Rev. B 32(11), 7209 (1985)
https://doi.org/10.1103/PhysRevB.32.7209
|
77 |
C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d= 3 (II): The ordered-phase case, Phys. Rev. B 35(7), 3585 (1987)
https://doi.org/10.1103/PhysRevB.35.3585
|
78 |
R. Schloms and V. Dohm, Minimal renormalization without ε-expansion: Critical behavior in three dimensions, Nucl. Phys. B 328(3), 639 (1989)
https://doi.org/10.1016/0550-3213(89)90223-X
|
79 |
G. ’t Hooft and H. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
https://doi.org/10.1016/0550-3213(72)90279-9
|
80 |
S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
https://doi.org/10.1007/s10955-011-0225-8
|
81 |
H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time scaling behaviour of critical relaxation processes, Z. Phys. B 73(4), 539 (1989)
https://doi.org/10.1007/BF01319383
|
82 |
F. W. Wegner, Corrections to scaling laws, Phys. Rev. B 5(11), 4529 (1972)
https://doi.org/10.1103/PhysRevB.5.4529
|
83 |
P. G. de Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A 30(8), 454 (1969)
https://doi.org/10.1016/0375-9601(69)90240-0
|
84 |
R. G. Priest and T. C. Lubensky, Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13(9), 4159 (1976)
https://doi.org/10.1103/PhysRevB.13.4159
|
85 |
R. B. Potts and C. Domb, Some generalized orderdisorder transformations, Proc. Camb. Philos. Soc. 48(01), 106 (1952)
https://doi.org/10.1017/S0305004100027419
|
86 |
R. K. P. Zia and D. J. Wallace, Critical behavior of the continuous n-component Potts model, J. Phys. A 8(9), 1495 (1975)
https://doi.org/10.1088/0305-4470/8/9/019
|
87 |
C. M. Fortuin and P. W. Kasteleyn, On the randomcluster model, Physica 57(4), 536 (1972)
https://doi.org/10.1016/0031-8914(72)90045-6
|
88 |
S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5(5), 965 (1975)
https://doi.org/10.1088/0305-4608/5/5/017
|
89 |
A. B. Harris, T. C. Lubensky, and J.-H. Chen, Critical properties of spin-glasses, Phys. Rev. Lett. 36, 415 (1976)
https://doi.org/10.1103/PhysRevLett.36.415
|
90 |
G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663 (2004)
https://doi.org/10.1103/RevModPhys.76.663
|
91 |
G. Ódor, Universality in Nonequilibrium Lattice Systems, Singapore: World Scientific, 2008
https://doi.org/10.1142/6813
|
92 |
H. K. Janssen and U. C. Täuber, The field theory approach to percolation processes, Ann. Phys. 315(1), 147 (2005)
https://doi.org/10.1016/j.aop.2004.09.011
|
93 |
H. D. I. Abarbanel, J. D. Bronzan, R. L. Sugar, and A. R. White, Reggeon field theory: Formulation and use, Phys. Rep. 21(3), 119 (1975)
https://doi.org/10.1016/0370-1573(75)90034-4
|
94 |
M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37(3), 255 (1978)
https://doi.org/10.1016/0370-1573(78)90098-4
|
95 |
J. L. Cardy and R. L. Sugar, Directed percolation and Reggeon field theory, J. Phys. A 13(12), L423 (1980)
https://doi.org/10.1088/0305-4470/13/12/002
|
96 |
G. Parisi and N. Sourlas, Critical behavior of branched polymers and the Lee–Yang edge singularity, Phys. Rev. Lett. 46(14), 871 (1981)
https://doi.org/10.1103/PhysRevLett.46.871
|
97 |
T. C. Lubensky and A. J. McKane, Anderson localization, branched polymers and the Yang–Lee edge singularity, J. Phys. Lett. 42(14), 331 (1981)
https://doi.org/10.1051/jphyslet:019810042014033100
|
98 |
J. L. Cardy, Directed lattice animals and the Lee–Yang edge singularity, J. Phys. A 15(11), L593 (1982)
https://doi.org/10.1088/0305-4470/15/11/004
|
99 |
A. J. McKane, D. J. Wallace, and R. K. P. Zia, Models for strong interactions in 6-∈ dimensions, Phys. Lett. B 65(2), 171 (1976)
https://doi.org/10.1016/0370-2693(76)90024-1
|
100 |
O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ∈3 for φ3 models of critical phenomena in 6-∈ dimensions, J. Phys. Math. Gen. 13(7), L247 (1980)
https://doi.org/10.1088/0305-4470/13/7/006
|
101 |
O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
https://doi.org/10.1088/0305-4470/14/9/034
|
102 |
A. J. McKane, Vacuum instability in scalar field theories, Nucl. Phys. B 152(1), 166 (1979)
https://doi.org/10.1016/0550-3213(79)90086-5
|
103 |
J. E. Kirkham and D. J. Wallace, Comments on the field-theoretic formulation of the Yang–Lee edge singularity, J. Phys. A 12(2), L47 (1979)
https://doi.org/10.1088/0305-4470/12/2/001
|
104 |
A. Houghton, J. S. Reeve, and D. J. Wallace, Highorder behavior in φ3 field theories and the percolation problem, Phys. Rev. B 17(7), 2956 (1978)
https://doi.org/10.1103/PhysRevB.17.2956
|
105 |
D. J. Amit, D. J. Wallace, and R. K. P. Zia, Universality in the percolation problem — Anomalous dimensions of φ4 operators, Phys. Rev. B 15(10), 4657 (1977)
https://doi.org/10.1103/PhysRevB.15.4657
|
106 |
D. J. Elderfield and A. J. McKane, Relevance of φ4 operators in the Edwards–Anderson model, Phys. Rev. B 18(7), 3730 (1978)
https://doi.org/10.1103/PhysRevB.18.3730
|
107 |
C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions (I): Theory of condensation, Phys. Rev. 87(3), 404 (1952)
https://doi.org/10.1103/PhysRev.87.404
|
108 |
T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model, Phys. Rev. 87(3), 410 (1952)
https://doi.org/10.1103/PhysRev.87.410
|
109 |
P. J. Kortman and R. B. Griffiths, Density of zeros on the Lee–Yang circle for two Ising ferromagnets, Phys. Rev. Lett. 27(21), 1439 (1971)
https://doi.org/10.1103/PhysRevLett.27.1439
|
110 |
D. A. Kurtze and M. E. Fisher, Yang–Lee edge singularities at high temperatures, Phys. Rev. B 20(7), 2785 (1979)
https://doi.org/10.1103/PhysRevB.20.2785
|
111 |
N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. B 41(1), 55 (1981)
https://doi.org/10.1007/BF01301410
|
112 |
J. Reeve, A. J. Guttmann, and B. Keck, Critical behavior of φ3 field theories in three dimensions, Phys. Rev. B 26(7), 3923 (1982)
https://doi.org/10.1103/PhysRevB.26.3923
|
113 |
See, e.g., L. H. Ryder, Quantum Field Theory, 2nd<Eds/>., Cambridge: Cambridge University Press, 2004
|
114 |
F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
https://doi.org/10.1103/PhysRevE.86.022104
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|