|
|
The art of designing carbon allotropes |
Run-Sen Zhang, Jin-Wu Jiang( ) |
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China |
|
|
Abstract Stimulated by the success of graphene and diamond, a variety of carbon allotropes have been discovered in recent years in either two-dimensional or three-dimensional configurations. Although these emerging carbon allotropes share some common features, they have certain different and novel mechanical or physical properties. In this review, we present a comparative survey of some of the major properties of fifteen newly discovered carbon allotropes. By comparing their structural topology, we propose a general route for designing most carbon allotropes from two mother structures, namely, graphene and diamond. Furthermore, we discuss several future prospects as well as current challenges in designing new carbon allotropes.
|
Keywords
carbon allotropes
mechanical properties
|
Just Accepted Date: 13 August 2018
Issue Date: 01 January 2019
|
|
1 |
R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)
https://doi.org/10.1002/anie.201600655
|
2 |
A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem. 56(4), 667 (1984)
https://doi.org/10.1021/ac00268a018
|
3 |
D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochim. Acta 45(1–2), 67 (1999)
https://doi.org/10.1016/S0013-4686(99)00194-2
|
4 |
J. F. Rusling and A. E. F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc. 115(25), 11891 (1993)
https://doi.org/10.1021/ja00078a030
|
5 |
D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, and H. Cohen, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc. 143(12), 3809 (1996)
https://doi.org/10.1149/1.1837300
|
6 |
M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Thin Solid Films 312(1–2), 240 (1998)
https://doi.org/10.1016/S0040-6090(97)00739-6
|
7 |
R. Saha, Z. Xue, Y. Huang, and W. D. Nix, Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects, J. Mech. Phys. Solids 49(9), 1997 (2001)
https://doi.org/10.1016/S0022-5096(01)00035-7
|
8 |
J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool, Int. J. Mach. Tools Manuf. 79, 49 (2014)
https://doi.org/10.1016/j.ijmachtools.2014.02.002
|
9 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
10 |
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)
https://doi.org/10.1038/318162a0
|
11 |
F. Diederich and M. Kivala, All-carbon scaffolds by rational design, Adv. Mater. 22(7), 803 (2010)
https://doi.org/10.1002/adma.200902623
|
12 |
C. Hug and S. W. Cranford, Sparse fulleryne structures enhance potential hydrogen storage and mobility, J. Mater. Chem. A 5, 21223 (2017)
https://doi.org/10.1039/C7TA05387H
|
13 |
J. Cremers, R. Haver, M. Rickhaus, J. Q. Gong, L. Favereau, M. D. Peeks, T. Claridge, L. M. Herz, and H. L. Anderson, Template-directed synthesis of a conjugated zinc porphyrin nanoball, J. Am. Chem. Soc. 140(16), 5352 (2018)
https://doi.org/10.1021/jacs.8b02552
|
14 |
E. Estrada and Y. Sim’on-Manso, Escherynes: Novel carbon allotropes with belt shapes, Chem. Phys. Lett. 548, 80 (2012)
https://doi.org/10.1016/j.cplett.2012.07.063
|
15 |
A. Kochaev, A. Karenin, R. Meftakhutdinov, and R. Brazhe, 2D supracrystals as a promising materials for planar nanoacoustoelectronics, J. Phys.: Conf. Ser. 345, 012007 (2012)
https://doi.org/10.1088/1742-6596/345/1/012007
|
16 |
E. Belenkov and I. Shakhova, Structure of carbinoid nanotubes and carbinofullerenes, Phys. Solid State 53(11), 2385 (2011)
https://doi.org/10.1134/S1063783411110059
|
17 |
A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes,physica status solidi (b) 248, 1879 (2011)
|
18 |
J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
https://doi.org/10.1021/ar2002705
|
19 |
Z. Ogumi and H. Wang, Carbon Anode Materials, Springer, 2009
|
20 |
D. H. Doughty, Materials issues in lithium ion rechargeable battery technology, Sampe Journal 32, 75 (1995)
|
21 |
K. McElhaney, J. Vlassak, and W. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13(05), 1300 (1998)
https://doi.org/10.1557/JMR.1998.0185
|
22 |
A. Richter, R. Ries, R. Smith, M. Henkel, and B. Wolf, Nanoindentation of diamond, graphite and fullerene films, Diamond Related Materials 9(2), 170 (2000)
https://doi.org/10.1016/S0925-9635(00)00188-6
|
23 |
W. Ni, Y. T. Cheng, and D. S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82(17), 2811 (2003)
https://doi.org/10.1063/1.1569984
|
24 |
D. J. Sprouster, S. Ruffell, J. E. Bradby, J. S. Williams, M. N. Lockrey, M. R. Phillips, R. C. Major, and O. L. Warren, Structural characterization of B-doped diamond nanoindentation tips, J. Mater. Res. 26(24), 3051 (2011)
https://doi.org/10.1557/jmr.2011.377
|
25 |
C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci. 41(2), 143 (2005)
https://doi.org/10.1016/j.paerosci.2005.02.004
|
26 |
U. Meier, Strengthening of structures using carbon fibre/ epoxy composites, Constr. Build. Mater. 9(6), 341 (1995)
https://doi.org/10.1016/0950-0618(95)00071-2
|
27 |
C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A 412(1–2), 171 (2005)
https://doi.org/10.1016/j.msea.2005.08.064
|
28 |
D. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon 50(9), 3342 (2012)
https://doi.org/10.1016/j.carbon.2012.01.031
|
29 |
N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, and C. Gao, A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination 437, 59 (2018)
https://doi.org/10.1016/j.desal.2018.02.024
|
30 |
A. D. Oyedele, C. M. Rouleau, D. B. Geohegan, and K. Xiao, The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures, Carbon 131, 246 (2018)
https://doi.org/10.1016/j.carbon.2018.02.020
|
31 |
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
https://doi.org/10.1007/s11467-015-0459-z
|
32 |
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, and Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective, Compos. Part B Eng. 137, 260 (2018)
https://doi.org/10.1016/j.compositesb.2017.11.023
|
33 |
M. Ye, Z. Zhang, Y. Zhao, and L. Qu, Graphene platforms for smart energy generation and storage, Joule 2, 245 (2017)
https://doi.org/10.1016/j.joule.2017.11.011
|
34 |
A. Darbandi, E. Gottardo, J. Huff, M. Stroscio, and T. Shokuhfar, A review of the cell to graphene-based nanomaterial interface, JOM 70(4), 566 (2018)
https://doi.org/10.1007/s11837-018-2744-0
|
35 |
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
https://doi.org/10.1021/cr900070d
|
36 |
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011)
https://doi.org/10.1016/j.pmatsci.2011.03.003
|
37 |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
https://doi.org/10.1038/nmat3064
|
38 |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
|
39 |
F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics, Nature Photon. 4, 611 (2010)
https://doi.org/10.1038/nphoton.2010.186
|
40 |
A. K. Geim, Graphene: Status and prospects, Science 324, 1530 (2009)
https://doi.org/10.1126/science.1158877
|
41 |
Y. V. Pleskov, Electrochemistry of diamond: A review, Russ. J. Electrochem. 38(12), 1275 (2002)
https://doi.org/10.1023/A:1021651920042
|
42 |
O. Auciello and A. V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond Related Materials 19(7–9), 699 (2010)
|
43 |
J. P. Goss, Theory of hydrogen in diamond, J. Phys.: Condens. Matter 15(17), R551 (2003)
https://doi.org/10.1088/0953-8984/15/17/201
|
44 |
J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44(9), 1624 (2006)
https://doi.org/10.1016/j.carbon.2006.02.038
|
45 |
Q. Cao and J. A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects, Adv. Mater. 21(1), 29 (2009)
https://doi.org/10.1002/adma.200801995
|
46 |
W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69(10), 1486 (2009)
https://doi.org/10.1016/j.compscitech.2008.06.018
|
47 |
J. Wang, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis 17(1), 7 (2005)
https://doi.org/10.1002/elan.200403113
|
48 |
O. Breuer and U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polym. Compos. 25(6), 630 (2004)
https://doi.org/10.1002/pc.20058
|
49 |
J. M. Schulman and R. L. Disch, A theoretical study of large planar [n]phenylenes, J. Phys. Chem. A 111(39), 10010 (2007)
https://doi.org/10.1021/jp074454v
|
50 |
S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. U.S.A. 112(8), 2372 (2015)
https://doi.org/10.1073/pnas.1416591112
|
51 |
J. W. Jiang, J. Leng, J. Li, Z. Guo, T. Chang, X. Guo, and T. Zhang, Twin graphene: A novel two-dimensional semiconducting carbon allotrope, Carbon 118, 370 (2017)
https://doi.org/10.1016/j.carbon.2017.03.067
|
52 |
R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
https://doi.org/10.1063/1.453405
|
53 |
Z. Wang, X. F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Phagraphene: A low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted Dirac cones, Nano Lett. 15(9), 6182 (2015)
https://doi.org/10.1021/acs.nanolett.5b02512
|
54 |
F. Schlütter, T. Nishiuchi, V. Enkelmann, and K. Müllen, Octafunctionalized biphenylenes: Molecular precursors for isomeric graphene nanostructures, Angew. Chem. Int. Ed. 53(6), 1538 (2014)
https://doi.org/10.1002/anie.201309324
|
55 |
C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6(1), 21879 (2016)
https://doi.org/10.1038/srep21879
|
56 |
Q. Song, B. Wang, K. Deng, X. Feng, M. Wagner, J. D. Gale, K. Müllen, and L. Zhi, Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units, J. Mater. Chem. C 1(1), 38 (2013)
https://doi.org/10.1039/C2TC00006G
|
57 |
A. T. Koch, A. H. Khoshaman, H. D. Fan, G. A. Sawatzky, and A. Nojeh, Graphenylene Nanotubes, J. Phys. Chem. Lett. 6(19), 3982 (2015)
https://doi.org/10.1021/acs.jpclett.5b01707
|
58 |
L. Zhu, Y. Jin, Q. Xue, X. Li, H. Zheng, T. Wu, and C. Ling, Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation, J. Mater. Chem. A 4(39), 15015 (2016)
https://doi.org/10.1039/C6TA04456E
|
59 |
W. Liu, M. Miao, and J. y. Liu, Band gap engineering of graphenylene by hydrogenation and halogenation: A density functional theory study,RSC Advances 5(87), 70766 (2015)
https://doi.org/10.1039/C5RA11208G
|
60 |
G. Fabris, N. Marana, E. Longo, and J. Sambrano, Theoretical study of porous surfaces derived from graphene and boron nitride, J. Solid State Chem. 258, 247 (2018)
https://doi.org/10.1016/j.jssc.2017.10.025
|
61 |
Y. Qu, F. Li, and M. Zhao, Efficient 3He/4He separation in a nanoporous graphenylene membrane, Phys. Chem. Chem. Phys. 19(32), 21522 (2017)
https://doi.org/10.1039/C7CP03422A
|
62 |
A. Balaban, C. C. Rentia, and E. Ciupitu, Estimation of relative stability of several planar and tridimensional lattices for elementary carbon, Rev. Roum. Chim. 13, 231 (1968)
|
63 |
Q. S. Du, P. D. Tang, H. L. Huang, F. L. Du, K. Huang, N. Z. Xie, S. Y. Long, Y. M. Li, J. S. Qiu, and R. B. Huang, A new type of two-dimensional carbon crystal prepared from 1, 3, 5-trihydroxybenzene, Sci. Rep. 7(1), 40796 (2017)
https://doi.org/10.1038/srep40796
|
64 |
R. Totani, C. Grazioli, T. Zhang, I. Bidermane, J. Lüder, M. de Simone, M. Coreno, B. Brena, L. Lozzi, and C. Puglia, Electronic structure investigation of biphenylene films, J. Chem. Phys. 146(5), 054705 (2017)
https://doi.org/10.1063/1.4975104
|
65 |
M. Bieri, M. Treier, J. Cai, K. Aït-Mansour, P. Ruffieux, O. Gröning, P. Gröning, M. Kastler, R. Rieger, X. Feng, K. Müllen, and R. Fasel, Porous graphenes: Twodimensional polymer synthesis with atomic precision, Chem. Commun. 45(45), 6919 (2009)
https://doi.org/10.1039/b915190g
|
66 |
Y. X. Yu, Graphenylene: A promising anode material for lithium-ion batteries with high mobility and storage, J. Mater. Chem. A 1(43), 13559 (2013)
https://doi.org/10.1039/c3ta12639k
|
67 |
S. Rouhi and A. Ghasemi, Investigation of the elastic properties of graphenylene using molecular dynamics simulations, Mater. Res. 20(1), 1 (2016)
https://doi.org/10.1590/1980-5373-mr-2015-0742
|
68 |
H. Lu and S. D. Li, Two-dimensional carbon allotropes from graphene to graphyne, J. Mater. Chem. C 1(23), 3677 (2013)
https://doi.org/10.1039/c3tc30302k
|
69 |
G. Brunetto, P. Autreto, L. Machado, B. Santos, R. P. Dos Santos, and D. S. Galvao, Nonzero gap twodimensional carbon allotrope from porous graphene, J. Phys. Chem. C 116(23), 12810 (2012)
https://doi.org/10.1021/jp211300n
|
70 |
M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, Ab Initioperiodic simulation of the spectroscopic and optical properties of novel porous graphene phases, J. Phys. Chem. C 117(5), 2222 (2013)
https://doi.org/10.1021/jp3103436
|
71 |
G. S. Fabris, C. E. Junkermeier, and R. Paupitz, Porous graphene and graphenylene nanotubes: Electronic structure and strain effects, Comput. Mater. Sci. 140, 344 (2017)
https://doi.org/10.1016/j.commatsci.2017.09.009
|
72 |
M. Hankel and D. J. Searles, Lithium storage on carbon nitride, graphenylene and inorganic graphenylene, Phys. Chem. Chem. Phys. 18(21), 14205 (2016)
https://doi.org/10.1039/C5CP07356A
|
73 |
O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension, FlatChem 1, 65 (2017)
https://doi.org/10.1016/j.flatc.2016.12.001
|
74 |
M. Q. Le, Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets, Comput. Mater. Sci. 136, 181 (2017)
https://doi.org/10.1016/j.commatsci.2017.05.004
|
75 |
C. P. Ewels, X. Rocquefelte, H. W. Kroto, M. J. Rayson, P. R. Briddon, and M. I. Heggie, Predicting experimentally stable allotropes: Instability of penta-graphene, Proc. Natl. Acad. Sci. USA 112(51), 15609 (2015)
https://doi.org/10.1073/pnas.1520402112
|
76 |
Z. Wang, F. Dong, B. Shen, R. Zhang, Y. Zheng, L. Chen, S. Wang, C. Wang, K. Ho, Y.-J. Fan, et al., Electronic and optical properties of novel carbon allotropes, Carbon 101, 77 (2016)
https://doi.org/10.1016/j.carbon.2016.01.078
|
77 |
H. Einollahzadeh, R. Dariani, and S. Fazeli, Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations, Solid State Commun. 229, 1 (2016)
https://doi.org/10.1016/j.ssc.2015.12.012
|
78 |
T. Stauber, J. Beltr’an, and J. Schliemann, Tight-binding approach to penta-graphene, Sci. Rep. 6(1), 22672 (2016)
https://doi.org/10.1038/srep22672
|
79 |
X. Li, S. Zhang, F. Q. Wang, Y. Guo, J. Liu, and Q. Wang, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 18(21), 14191 (2016)
https://doi.org/10.1039/C6CP01092J
|
80 |
S. W. Cranford, When is 6 less than 5? Penta- to hexagraphene transition, Carbon 96, 421 (2016)
https://doi.org/10.1016/j.carbon.2015.09.092
|
81 |
H. Sun, S. Mukherjee, and C. V. Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study, Phys. Chem. Chem. Phys. 18(38), 26736 (2016)
https://doi.org/10.1039/C6CP04595B
|
82 |
Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, and H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization, Nano Res. 10(11), 3865 (2017)
https://doi.org/10.1007/s12274-017-1600-9
|
83 |
S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation, Mol. Simul. 42(17), 1485 (2016)
https://doi.org/10.1080/08927022.2016.1205191
|
84 |
Z. G. Yu and Y. W. Zhang, A comparative density functional study on electrical properties of layered pentagraphene, J. Appl. Phys. 118(16), 165706 (2015)
https://doi.org/10.1063/1.4934855
|
85 |
G. Berdiyorov, G. Dixit, and M. Madjet, Band gap engineering in penta-graphene by substitutional doping: first-principles calculations, J. Phys.: Condens. Matter 28(47), 475001 (2016)
https://doi.org/10.1088/0953-8984/28/47/475001
|
86 |
J. Quijano-Briones, H. Fernández-Escamilla, and A. Tlahuice-Flores, Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study, Phys. Chem. Chem. Phys. 18(23), 15505 (2016)
https://doi.org/10.1039/C6CP02781D
|
87 |
G. R. Berdiyorov and M. E. A. Madjet, First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2, RSC Advances 6(56), 50867 (2016)
https://doi.org/10.1039/C6RA10376F
|
88 |
J. I. G. Enriquez and A. R. C. Villagracia, Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene, Int. J. Hydrogen Energy 41(28), 12157 (2016)
https://doi.org/10.1016/j.ijhydene.2016.06.035
|
89 |
H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Studying the electronic and phononic structure of pentagraphane, Sci. Technol. Adv. Mater. 17(1), 610 (2016)
https://doi.org/10.1080/14686996.2016.1219970
|
90 |
B. Rajbanshi, S. Sarkar, B. Mandal, and P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons, Carbon 100, 118 (2016)
https://doi.org/10.1016/j.carbon.2016.01.014
|
91 |
P. Yuan, Z. Zhang, Z. Fan, and M. Qiu, Electronic structure and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19(14), 9528 (2017)
https://doi.org/10.1039/C7CP00029D
|
92 |
W. Xu, G. Zhang, and B. Li, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys. 143(15), 154703 (2015)
https://doi.org/10.1063/1.4933311
|
93 |
H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional pentastructures, Nano Lett. 16(6), 3831 (2016)
https://doi.org/10.1021/acs.nanolett.6b01311
|
94 |
F. Q. Wang, J. Yu, Q. Wang, Y. Kawazoe, and P. Jena, Lattice thermal conductivity of penta-graphene, Carbon 105, 424 (2016)
https://doi.org/10.1016/j.carbon.2016.04.054
|
95 |
X. Wu, V. Varshney, J. Lee, T. Zhang, J. L. Wohlwend, A. K. Roy, and T. Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett. 16(6), 3925 (2016)
https://doi.org/10.1021/acs.nanolett.6b01536
|
96 |
F. Q. Wang, J. Liu, X. Li, Q. Wang, and Y. Kawazoe, Weak interlayer dependence of lattice thermal conductivity on stacking thickness of penta-graphene, Appl. Phys. Lett. 111(19), 192102 (2017)
https://doi.org/10.1063/1.4996054
|
97 |
Y. Y. Zhang, Q. X. Pei, Y. Cheng, Y. W. Zhang, and X. Zhang, Thermal conductivity of penta-graphene: The role of chemical functionalization, Comput. Mater. Sci. 137, 195 (2017)
https://doi.org/10.1016/j.commatsci.2017.05.042
|
98 |
R. Krishnan, W. S. Su, and H. T. Chen, A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation, Carbon 114, 465 (2017)
https://doi.org/10.1016/j.carbon.2016.12.054
|
99 |
B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Pentagraphene: A promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate, ACS Appl. Mater. Interfaces 8, 35342 (2016)
https://doi.org/10.1021/acsami.6b12727
|
100 |
Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D Appl. Phys. 42(10), 102002 (2009)
https://doi.org/10.1088/0022-3727/42/10/102002
|
101 |
M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
https://doi.org/10.1002/anie.199708361
|
102 |
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. (Camb.) 46(19), 3256 (2010)
https://doi.org/10.1039/b922733d
|
103 |
Y. Q. Zhang, N. Kepčija, M. Kleinschrodt, K. Diller, S. Fischer, A. C. Papageorgiou, F. Allegretti, J. Björk, S. Klyatskaya, F. Klappenberger, M. Ruben, and J. V. Barth, Homo-coupling of terminal alkynes on a noble metal surface, Nat. Commun. 3(1), 1286 (2012)
https://doi.org/10.1038/ncomms2291
|
104 |
A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
|
105 |
Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, and A. Dearden, New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology, Nanotechnol. Sci. Appl. 7, 1 (2014)
https://doi.org/10.2147/NSA.S40324
|
106 |
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
https://doi.org/10.1039/c3cs60388a
|
107 |
Z. Chen, C. Molina-Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
https://doi.org/10.1002/andp.201700056
|
108 |
F. Chang, L. Huang, Y. Li, C. Guo, and Q. Diao, A short review of synthesis of graphdiyne and its potential applications, Int. J. Electrochem. Sci. 12, 10348 (2017)
https://doi.org/10.20964/2017.11.70
|
109 |
X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
https://doi.org/10.1039/C4CP04683H
|
110 |
H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
https://doi.org/10.1021/ja5131337
|
111 |
L. Sun, P. Jiang, H. Liu, D. Fan, J. Liang, J. Wei, L. Cheng, J. Zhang, and J. Shi, Graphdiyne: A twodimensional thermoelectric material with high figure of merit, Carbon 90, 255 (2015)
https://doi.org/10.1016/j.carbon.2015.04.037
|
112 |
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
https://doi.org/10.1103/PhysRevB.58.11009
|
113 |
H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Advances 1(5), 768 (2011)
https://doi.org/10.1039/c1ra00481f
|
114 |
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
|
115 |
Y. Yang and X. Xu, Mechanical properties of graphyne and its family – A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
https://doi.org/10.1016/j.commatsci.2012.03.052
|
116 |
Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: a first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
https://doi.org/10.1039/c2cp42387a
|
117 |
S. Ajori, R. Ansari, and M. Mirnezhad, Mechanical properties of defective g-graphyne using molecular dynamics simulations, Mater. Sci. Eng. A 561, 34 (2013)
https://doi.org/10.1016/j.msea.2012.10.094
|
118 |
S. Ma, M. Zhang, L. Sun, and K. Zhang, Hightemperature behavior of monolayer graphyne and graphdiyne, Carbon 99, 547 (2016)
https://doi.org/10.1016/j.carbon.2015.12.086
|
119 |
Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
https://doi.org/10.1021/jp4021189
|
120 |
S. W. Cranford, D. B. Brommer, and M. J. Buehler, Extended graphynes: simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
https://doi.org/10.1039/c2nr31644g
|
121 |
Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101, 666 (2012)
https://doi.org/10.1063/1.4747719
|
122 |
Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
https://doi.org/10.1016/j.physb.2012.07.026
|
123 |
M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
https://doi.org/10.1351/pac200880030519
|
124 |
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
https://doi.org/10.1103/PhysRevB.84.075439
|
125 |
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
https://doi.org/10.1039/c1cc15129k
|
126 |
G. M. Psofogiannakis and G. E. Froudakis, Computational prediction of new hydrocarbon materials: The hydrogenated forms of graphdiyne, J. Phys. Chem. C 116(36), 19211 (2012)
https://doi.org/10.1021/jp306704b
|
127 |
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
https://doi.org/10.1021/nn102472s
|
128 |
S. Jalili, F. Houshmand, and J. Schofield, Study of carrier mobility of tubular and planar graphdiyne, Appl. Phys. A 119(2), 571 (2015)
https://doi.org/10.1007/s00339-015-8992-8
|
129 |
J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Firstprinciples prediction of charge mobility in carbon and organic nanomaterials, Nanoscale 4(15), 4348 (2012)
https://doi.org/10.1039/c2nr30585b
|
130 |
H. J. Cui, X. L. Sheng, Q. B. Yan, Q. R. Zheng, and G. Su, Strain-induced Dirac cone-like electronic structures and semiconductor–semimetal transition in graphdiyne, Phys. Chem. Chem. Phys. 15(21), 8179 (2013)
https://doi.org/10.1039/c3cp44457k
|
131 |
K. Krishnamoorthy, S. Thangavel, J. C. Veetil, N. Raju, G. Venugopal, and S. J. Kim, Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors, International Journal of Hydrogen Energy 41, 1672 (2016)
https://doi.org/10.1016/j.ijhydene.2015.10.118
|
132 |
K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
https://doi.org/10.1021/jp212181h
|
133 |
C. Sun and D. J. Searles, Lithium storage on graphdiyne predicted by DFT calculations, J. Phys. Chem. C 116(50), 26222 (2012)
https://doi.org/10.1021/jp309638z
|
134 |
H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
https://doi.org/10.1063/1.4789635
|
135 |
B. Jang, J. Koo, M. Park, H. Lee, J. Nam, Y. Kwon, and H. Lee, Graphdiyne as a high-capacity lithium ion battery anode material, Appl. Phys. Lett. 103(26), 263904 (2013)
https://doi.org/10.1063/1.4850236
|
136 |
S. Zhang, H. Du, J. He, C. Huang, H. Liu, G. Cui, and Y. Li, Nitrogen-doped graphdiyne applied for lithium-ion storage, ACS Appl. Mater. Interfaces 8, 8467 (2016)
https://doi.org/10.1021/acsami.6b00255
|
137 |
H. Du, H. Yang, C. Huang, J. He, H. Liu, and Y. Li, Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities, Nano Energy 22, 615 (2016)
https://doi.org/10.1016/j.nanoen.2016.02.052
|
138 |
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
https://doi.org/10.1039/C4CC08706B
|
139 |
C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui, and Y. Li, Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11, 481 (2015)
https://doi.org/10.1016/j.nanoen.2014.11.036
|
140 |
H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
https://doi.org/10.1021/jp406081v
|
141 |
R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
https://doi.org/10.1039/C4NR03185G
|
142 |
J. Li, X. Gao, B. Liu, Q. Feng, X. B. Li, M. Y. Huang, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production, J. Am. Chem. Soc. 138(12), 3954 (2016)
https://doi.org/10.1021/jacs.5b12758
|
143 |
S. W. Cranford and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
https://doi.org/10.1039/c2nr30921a
|
144 |
L. F. C. Pereira, B. Mortazavi, M. Makaremi, and T. Rabczuk, Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study, RSC Advances 6(63), 57773 (2016)
https://doi.org/10.1039/C6RA05082D
|
145 |
D. Wu, S. Wang, J. Yuan, B. Yang, and H. Chen, Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 19(19), 11771 (2017)
https://doi.org/10.1039/C6CP08621G
|
146 |
A. Lopez-Bezanilla, Strain-mediated modification of phagraphene Dirac cones, J. Phys. Chem. C 120(30), 17101 (2016)
https://doi.org/10.1021/acs.jpcc.6b05593
|
147 |
A. Luo, R. Hu, Z. Fan, H. Zhang, J. Yuan, C. Yang, and Z. Zhang, Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping, Org. Electron. 51, 277 (2017)
https://doi.org/10.1016/j.orgel.2017.09.025
|
148 |
Y. Liu, Z. Chen, L. Tong, J. Zhang, and D. Sun, Effect of edge-hydrogen passivation and nanometer size on the electronic properties of phagraphene ribbons, Comput. Mater. Sci. 117, 279 (2016)
https://doi.org/10.1016/j.commatsci.2016.02.010
|
149 |
P. Yuan, Z. Fan, and Z. Zhang, Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: A theoretical prediction, Carbon 124, 228 (2017)
https://doi.org/10.1016/j.carbon.2017.08.068
|
150 |
D. Ferguson, D. J. Searles, and M. Hankel, Biphenylene and phagraphene as lithium ion battery anode materials, ACS Appl. Mater. Interfaces 9, 20577 (2017)
https://doi.org/10.1021/acsami.7b04170
|
151 |
W. C. Lothrop, Biphenylene, J. Am. Chem. Soc. 63(5), 1187 (1941)
https://doi.org/10.1021/ja01850a007
|
152 |
N. Yedla, P. Gupta, T. Y. Ng, and K. Geethalakshmi, Effect of loading direction and defects on the strength and fracture behavior of biphenylene based graphene monolayer, Mater. Chem. Phys. 202, 127 (2017)
https://doi.org/10.1016/j.matchemphys.2017.09.016
|
153 |
M. A. Hudspeth, B. W. Whitman, V. Barone, and J. E. Peralta, Electronic properties of the biphenylene sheet and its one-dimensional derivatives, ACS Nano 4(8), 4565 (2010)
https://doi.org/10.1021/nn100758h
|
154 |
P. A. Denis, Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets, J. Phys. Chem. C 118(43), 24976 (2014)
https://doi.org/10.1021/jp5069895
|
155 |
S. Wang, Optical response and excitonic effects in graphene nanoribbons derived from biphenylene, Mater. Lett. 167, 258 (2016)
https://doi.org/10.1016/j.matlet.2016.01.017
|
156 |
P. A. Denis and F. Iribarne, Hydrogen storage in doped biphenylene based sheets, Comput. Theor. Chem. 1062, 30 (2015)
https://doi.org/10.1016/j.comptc.2015.03.012
|
157 |
J. Liu, T. Zhao, S. Zhang, and Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material, Nano Energy 38, 263 (2017)
https://doi.org/10.1016/j.nanoen.2017.05.017
|
158 |
Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal Growth and Design 16, 1360 (2016)
https://doi.org/10.1021/acs.cgd.5b01490
|
159 |
Y. Liu, X. Jiang, J. Fu, and J. Zhao, New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon 126, 601 (2018)
https://doi.org/10.1016/j.carbon.2017.10.066
|
160 |
X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)
https://doi.org/10.1103/PhysRevLett.106.155703
|
161 |
X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
https://doi.org/10.1016/j.carbon.2017.07.034
|
162 |
Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52(5), 2385 (2017)
https://doi.org/10.1007/s10853-016-0564-6
|
163 |
J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20 T-carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Condens. Matter 28(47), 475402 (2016)
https://doi.org/10.1088/0953-8984/28/47/475402
|
164 |
D. Pantea, S. Brochu, S. Thiboutot, G. Ampleman, and G. Scholz, A morphological investigation of soot produced by the detonation of munitions, Chemosphere 65(5), 821 (2006)
https://doi.org/10.1016/j.chemosphere.2006.03.027
|
165 |
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
|
166 |
P. Chen, F. Huang, and S. Yun, Characterization of the condensed carbon in detonation soot, Carbon 41(11), 2093 (2003)
https://doi.org/10.1016/S0008-6223(03)00229-X
|
167 |
X. Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
https://doi.org/10.1016/j.intermet.2011.03.026
|
168 |
F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91(1), 015502 (2003)
https://doi.org/10.1103/PhysRevLett.91.015502
|
169 |
L. C. Xu, X. J. Song, R. Z. Wang, Z. Yang, X. Y. Li, and H. Yan, Designing electronic anisotropy of threedimensional carbon allotropes for the all-carbon device, Appl. Phys. Lett. 107(2), 021905 (2015)
https://doi.org/10.1063/1.4926983
|
170 |
J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, and H. Su, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683(2017)
https://doi.org/10.1038/s41467-017-00817-9
|
171 |
X. Q. Chen, H. Niu, C. Franchini, D. Li, and Y. Li, Hardness of T-carbon: Density functional theory calculations, Phys. Rev. B 84(12), 121405 (2011)
https://doi.org/10.1103/PhysRevB.84.121405
|
172 |
S. Y. Yue, G. Qin, X. Zhang, X. Sheng, G. Su, and M. Hu, Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initiostudy, Phys. Rev. B 95(8), 085207 (2017)
https://doi.org/10.1103/PhysRevB.95.085207
|
173 |
Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007)
https://doi.org/10.1103/PhysRevB.76.054115
|
174 |
A. O. Lyakhov and A. R. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092130 (2011)
https://doi.org/10.1103/PhysRevB.84.092103
|
175 |
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
https://doi.org/10.1080/14786440808520496
|
176 |
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
https://doi.org/10.1039/c3cs60388a
|
177 |
J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet,J. Phys. Chem. C 115(42), 20466 (2011)
https://doi.org/10.1021/jp206751m
|
178 |
R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)
https://doi.org/10.1103/PhysRevB.85.125428
|
179 |
J. Zhou, K. Lv, Q. Wang, X. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
https://doi.org/10.1063/1.3583476
|
180 |
H. Bu, M. Zhao, H. Zhang, X. Wang, Y. Xi, and Z. Wang, Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification, J. Phys. Chem. A 116(15), 3934 (2012)
https://doi.org/10.1021/jp300107d
|
181 |
C. Feng, X. H. Luan, P. Zhang, J. Xiao, D. G. Yang, and H. B. Qin, in: Electronic Packaging Technology (ICEPT), 2017, 18th International Conference on (IEEE, 2017), pp 1138–1142
|
182 |
Z. Xu, X. Lv, J. Li, J. Chen, and Q. Liu, A promising anode material for sodium-ion battery with high capacity and high diffusion ability: Graphyne and graphdiyne, RSC Advances 6(30), 25594 (2016)
https://doi.org/10.1039/C6RA01870J
|
183 |
Y. Pan, C. Xie, M. Xiong, M. Ma, L. Liu, Z. Li, S. Zhang, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, A superhard sp3 microporous carbon with direct bandgap, Chem. Phys. Lett. 689, 68 (2017)
https://doi.org/10.1016/j.cplett.2017.10.014
|
184 |
R. L. Austman, J. S. Milner, D. W. Holdsworth, and C. E. Dunning, The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone, J. Biomech. 41(15), 3171 (2008)
https://doi.org/10.1016/j.jbiomech.2008.08.017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|