Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137401    https://doi.org/10.1007/s11467-017-0726-2
RESEARCH ARTICLE
Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides
R. Szcze¸śniak, A. P. Durajski(), M. W. Jarosik
Institute of Physics, Cze¸stochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Cze¸stochowa, Poland
 Download: PDF(2906 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metallization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoS2 and WS2, we find that the superconducting state is characterized by an electron–phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional superconductors and suggest that the investigated materials may be good candidates for nanoscale superconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen–Cooper–Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.

Keywords 2D superconductivity      effect of intercalation      transition-metal dichalcogenides      thermodynamic properties     
Corresponding Author(s): A. P. Durajski   
Issue Date: 30 October 2017
 Cite this article:   
R. Szcze¸śniak,A. P. Durajski,M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0726-2
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137401
1 Y.Saito, T.Nojima, and Y.Iwasa, Highly crystalline 2D superconductors, Nat. Rev. Mater. 2(1), 16094 (2016)
https://doi.org/10.1038/natrevmats.2016.94
2 W.Choi, N.Choudhary, G. H.Han, J.Park, D.Akinwande, and Y. H.Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today20(3), 116(2017)
https://doi.org/10.1016/j.mattod.2016.10.002
3 T.Uchihashi, Two-dimensional superconductors with atomic-scale thickness, Supercond. Sci. Technol. 30(1), 013002(2017)
https://doi.org/10.1088/0953-2048/30/1/013002
4 B.Sacépé, T.Dubouchet, C.Chapelier, M.Sanquer, M.Ovadia, D.Shahar, M.Feigelman, and L.Ioffe, Localization of preformed cooper pairs in disordered superconductors, Nat. Phys. 7(3), 239(2011)
5 Y.Guo, Y. F.Zhang, X. Y.Bao, T. Z.Han, Z.Tang, L. X.Zhang, W. G.Zhu, E. G.Wang, Q.Niu, Z. Q.Qiu, J. F.Jia, Z. X.Zhao, and Q. K.Xue, Superconductivity modulated by quantum size effects, Science306(5703), 1915(2004)
https://doi.org/10.1126/science.1105130
6 A. P.Durajski, Effect of layer thickness on the superconducting properties in ultrathin Pb films, Supercond. Sci. Technol. 28(9), 095011(2015)
https://doi.org/10.1088/0953-2048/28/9/095011
7 E.Talantsev, W.Crump, J.Island, Y.Xing, Y.Sun, J.Wang, and J.Tallon, On the origin of critical temperature enhancement in atomically thin superconductors, 2D Mater. 4, 025072(2017)
8 A. M.Goldmanand N.Marković, Superconductorinsulator transitions in the two-dimensional limit, Phys. Today51(11), 39(1998)
https://doi.org/10.1063/1.882069
9 V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group (I): Classical systems, Sov. Phys. JETP32, 493500(1971)
10 V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group (II): Quantum systems, Sov. Phys. JETP34, 610616(1972)
11 J. M.Kosterlitzand D. J.Thouless, Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory), J. Phys. C5(11), L124(1972)
https://doi.org/10.1088/0022-3719/5/11/002
12 T.Zhang, S.Wu, R.Yang, and G.Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206(2017)
https://doi.org/10.1007/s11467-017-0648-z
13 H. W.Qing, K.Kalantar-Zadeh, A.Kis, J. N.Coleman, and M. S.Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699712(2012)
14 X.Duan, C.Wang, A.Pan, R.Yu, and X.Duan, Twodimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges, Chem. Soc. Rev. 44(24), 8859(2015)
https://doi.org/10.1039/C5CS00507H
15 Y.Guoand J.Robertson, Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures, Appl. Phys. Lett. 108(23), 233104(2016)
https://doi.org/10.1063/1.4953169
16 D.Szcześniak, A.Ennaoui, and S.Ahzi, Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects, J. Phys.: Condens. Matter28(35), 355301(2016)
https://doi.org/10.1088/0953-8984/28/35/355301
17 A.Kandemir, H.Yapicioglu, A.Kinaci, T.Çaǧın, and C.Sevik, Thermal transport properties of MoS2 and MoSe2 monolayers, Nanotechnology27(5), 055703(2016)
https://doi.org/10.1088/0957-4484/27/5/055703
18 P.Zhao, J.Zheng, P.Guo, Z.Jiang, L.Cao, and Y.Wan, Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study, Comput. Mater. Sci. 128, 287(2017)
https://doi.org/10.1016/j.commatsci.2016.11.030
19 K. K.Kam, and B. A.Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, J. Phys. Chem. 86(4), 463(1982)
https://doi.org/10.1021/j100393a010
20 K. F.Mak,C.Lee, J.Hone, J.Shan, and T. F.Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805(2010)
https://doi.org/10.1103/PhysRevLett.105.136805
21 G.Luo, Z. Z.Zhang, H. O.Li, X. X.Song, G. W.Deng, G.Cao, M.Xiao, and G. P.Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502(2017)
https://doi.org/10.1007/s11467-017-0652-3
22 K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science306(5696), 666(2004)
https://doi.org/10.1126/science.1102896
23 J. W.Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287(2015)
https://doi.org/10.1007/s11467-015-0459-z
24 A. P.Durajski,Influence of hole doping on the superconducting state in graphane, Supercond. Sci. Technol. 28(3), 035002(2015)
https://doi.org/10.1088/0953-2048/28/3/035002
25 X.Lin, W.Li, Y.Dong, C.Wang, Q.Chen, and H.Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49(2016)
https://doi.org/10.1016/j.commatsci.2016.07.020
26 J.Pešić, R.Gajić, K.Hingerl, and M.Belić, Strainenhanced superconductivity in Li-doped graphene, Europhys. Lett. 108(6), 67005(2014)
https://doi.org/10.1209/0295-5075/108/67005
27 J. J.Zhang, B.Gao, and S.Dong, Strain-enhanced superconductivity of MoX2 (X= S or Se) bilayers with Na intercalation, Phys. Rev. B93(15), 155430(2016)
https://doi.org/10.1103/PhysRevB.93.155430
28 G. Q.Huang, Z. W.Xing, and D. Y.Xing, Dynamical stability and superconductivity of Li-intercalated bi-layer MoS2: A first-principles prediction, Phys. Rev. B93(10), 104511(2016)
https://doi.org/10.1103/PhysRevB.93.104511
29 X.He, H.Li, Z.Zhu, Z.Dai, Y.Yang, P.Yang, Q.Zhang, P.Li, U.Schwingenschlogl, and X.Zhang, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett. 109(17), 173105(2016)
https://doi.org/10.1063/1.4966218
30 J. T.Ye, Y. J.Zhang, R.Akashi, M. S.Bahramy, R.Arita, and Y.Iwasa, Superconducting dome in a gatetuned band insulator, Science338(6111), 1193(2012)
https://doi.org/10.1126/science.1228006
31 A. P.Nayak, S.Bhattacharyya, J.Zhu, J.Liu, X.Wu, T.Pandey, C.Jin, A. K.Singh, D.Akinwande, and J.-F.Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun. 5, 3731(2014)
https://doi.org/10.1038/ncomms4731
32 Z.Chi, F.Yen, F.Peng, J.Zhu, Y.-J.Zhang, X.Chen, Z.Yang, X.Liu, Y.Ma, Y.Zhao, T.Kagayama, and Y.Iwasa, Ultrahigh pressure superconductivity in molybdenum disulfide, arXiv: 1503.05331 (2015)
33 R. B.Somoano, V.Hadek, and A.Rembaum, Alkali metal intercalates of molybdenum disulfide, J. Chem. Phys. 58(2), 697(1973)
https://doi.org/10.1063/1.1679256
34 R. B.Somoano, V.Hadek, A.Rembaum, S.Samson, and J. A.Woollam, The alkaline earth intercalates of molybenum disulfide, J. Chem. Phys. 62(3), 1068(1975)
https://doi.org/10.1063/1.430548
35 J. A.Woollamand R. B.Somoano, Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2, Phys. Rev. B13, 3843(1976)
https://doi.org/10.1103/PhysRevB.13.3843
36 G. Q.Huang, Z. W.Xing, and D. Y.Xing, Prediction of superconductivity in li-intercalated bilayer phosphorene, Appl. Phys. Lett. 106(11), 113107(2015)
https://doi.org/10.1063/1.4916100
37 Y.Saito, T.Nojima, and Y.Iwasa, Gate-induced superconductivity in two-dimensional atomic crystals, Supercond. Sci. Technol. 29(9), 093001(2016)
https://doi.org/10.1088/0953-2048/29/9/093001
38 D.Szcze¸śniak, A. P.Durajski, and R.Szcze¸śniak, Influence of lithium doping on the thermodynamic properties of graphene based superconductors, J. Phys.: Condens. Matter26(25), 255701(2014)
https://doi.org/10.1088/0953-8984/26/25/255701
39 S.Ichinokura, K.Sugawara, A.Takayama, T.Takahashi, and S.Hasegawa, Superconducting calciumintercalated bilayer graphene, ACS Nano10, 2761(2016)
https://doi.org/10.1021/acsnano.5b07848
40 J.Chapman, Y.Su, C. A.Howard, D.Kundys, A. N.Grigorenko, F.Guinea, A. K.Geim,I. V.Grigorievaand R. R.Nair, Superconductivity in Ca-doped graphene laminates, Sci. Rep. 6(1), 23254(2016)
https://doi.org/10.1038/srep23254
41 P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, G. L.Chiarotti, M.Cococcioni, I.Dabo, A. D.Corso, S.de Gironcoli, S.Fabris, G.Fratesi, and R.Gebauer, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21(39), 395502(2009)
https://doi.org/10.1088/0953-8984/21/39/395502
42 F.Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89(1), 015003(2017)
https://doi.org/10.1103/RevModPhys.89.015003
43 F.Giustino, Materials Modelling Using Density Functional Theory: Properties and Predictions, Oxford: Oxford University Press, 2014
44 J. L.Verbleand T. J.Wieting, Lattice mode degeneracy in MoS2 and other layer compounds, Phys. Rev. Lett. 25, 362(1970)
https://doi.org/10.1103/PhysRevLett.25.362
45 R.Szcze¸śniak, A. P.Durajski, and M. W.Jarosik, Metallization and superconductivity in Ca-intercalated bilayer MoS2, J. Phys. Chem. Solids111, 254(2017)
https://doi.org/10.1016/j.jpcs.2017.08.003
46 G. M.Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP11, 696(1960)
47 J. P.Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027(1990)
https://doi.org/10.1103/RevModPhys.62.1027
48 R.Szcze¸śniak, The numerical solution of the imaginaryaxis Eliashberg equations, Acta Phys. Pol. A109(2), 179(2006)
https://doi.org/10.12693/APhysPolA.109.179
49 R.Szcze¸śniakand A. P.Durajski, Superconductivity well above room temperature in compressed MgH6, Front. Phys. 11(6), 117406(2016)
https://doi.org/10.1007/s11467-016-0578-1
50 J. P.Carbotteand P.Vashishta, Condensation energy of a superconductor, Phys. Lett. A33(4), 227(1970)
https://doi.org/10.1016/0375-9601(70)90747-4
51 J.Sólyom, Fundamentals of the Physics of Solids: Volume 3- Normal, Broken-Symmetry, and Correlated Systems, Springer, 2011
52 J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162(1957)
https://doi.org/10.1103/PhysRev.106.162
53 J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Theory of superconductivity, Phys. Rev.108(5), 1175(1957)
https://doi.org/10.1103/PhysRev.108.1175
[1] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[2] Bo Zhu, Yan Cheng, Zhen-Wei Niu, Meng Zhou, Min Gong. LDA+U calculation of structural and thermodynamic properties of Ce2O3[J]. Front. Phys. , 2014, 9(4): 483-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed