|
|
Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides |
R. Szcze¸śniak, A. P. Durajski( ), M. W. Jarosik |
Institute of Physics, Cze¸stochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Cze¸stochowa, Poland |
|
|
Abstract We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metallization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoS2 and WS2, we find that the superconducting state is characterized by an electron–phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional superconductors and suggest that the investigated materials may be good candidates for nanoscale superconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen–Cooper–Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.
|
Keywords
2D superconductivity
effect of intercalation
transition-metal dichalcogenides
thermodynamic properties
|
Corresponding Author(s):
A. P. Durajski
|
Issue Date: 30 October 2017
|
|
1 |
Y.Saito, T.Nojima, and Y.Iwasa, Highly crystalline 2D superconductors, Nat. Rev. Mater. 2(1), 16094 (2016)
https://doi.org/10.1038/natrevmats.2016.94
|
2 |
W.Choi, N.Choudhary, G. H.Han, J.Park, D.Akinwande, and Y. H.Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today20(3), 116(2017)
https://doi.org/10.1016/j.mattod.2016.10.002
|
3 |
T.Uchihashi, Two-dimensional superconductors with atomic-scale thickness, Supercond. Sci. Technol. 30(1), 013002(2017)
https://doi.org/10.1088/0953-2048/30/1/013002
|
4 |
B.Sacépé, T.Dubouchet, C.Chapelier, M.Sanquer, M.Ovadia, D.Shahar, M.Feigelman, and L.Ioffe, Localization of preformed cooper pairs in disordered superconductors, Nat. Phys. 7(3), 239(2011)
|
5 |
Y.Guo, Y. F.Zhang, X. Y.Bao, T. Z.Han, Z.Tang, L. X.Zhang, W. G.Zhu, E. G.Wang, Q.Niu, Z. Q.Qiu, J. F.Jia, Z. X.Zhao, and Q. K.Xue, Superconductivity modulated by quantum size effects, Science306(5703), 1915(2004)
https://doi.org/10.1126/science.1105130
|
6 |
A. P.Durajski, Effect of layer thickness on the superconducting properties in ultrathin Pb films, Supercond. Sci. Technol. 28(9), 095011(2015)
https://doi.org/10.1088/0953-2048/28/9/095011
|
7 |
E.Talantsev, W.Crump, J.Island, Y.Xing, Y.Sun, J.Wang, and J.Tallon, On the origin of critical temperature enhancement in atomically thin superconductors, 2D Mater. 4, 025072(2017)
|
8 |
A. M.Goldmanand N.Marković, Superconductorinsulator transitions in the two-dimensional limit, Phys. Today51(11), 39(1998)
https://doi.org/10.1063/1.882069
|
9 |
V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group (I): Classical systems, Sov. Phys. JETP32, 493500(1971)
|
10 |
V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group (II): Quantum systems, Sov. Phys. JETP34, 610616(1972)
|
11 |
J. M.Kosterlitzand D. J.Thouless, Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory), J. Phys. C5(11), L124(1972)
https://doi.org/10.1088/0022-3719/5/11/002
|
12 |
T.Zhang, S.Wu, R.Yang, and G.Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206(2017)
https://doi.org/10.1007/s11467-017-0648-z
|
13 |
H. W.Qing, K.Kalantar-Zadeh, A.Kis, J. N.Coleman, and M. S.Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699712(2012)
|
14 |
X.Duan, C.Wang, A.Pan, R.Yu, and X.Duan, Twodimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges, Chem. Soc. Rev. 44(24), 8859(2015)
https://doi.org/10.1039/C5CS00507H
|
15 |
Y.Guoand J.Robertson, Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures, Appl. Phys. Lett. 108(23), 233104(2016)
https://doi.org/10.1063/1.4953169
|
16 |
D.Szcześniak, A.Ennaoui, and S.Ahzi, Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects, J. Phys.: Condens. Matter28(35), 355301(2016)
https://doi.org/10.1088/0953-8984/28/35/355301
|
17 |
A.Kandemir, H.Yapicioglu, A.Kinaci, T.Çaǧın, and C.Sevik, Thermal transport properties of MoS2 and MoSe2 monolayers, Nanotechnology27(5), 055703(2016)
https://doi.org/10.1088/0957-4484/27/5/055703
|
18 |
P.Zhao, J.Zheng, P.Guo, Z.Jiang, L.Cao, and Y.Wan, Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study, Comput. Mater. Sci. 128, 287(2017)
https://doi.org/10.1016/j.commatsci.2016.11.030
|
19 |
K. K.Kam, and B. A.Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, J. Phys. Chem. 86(4), 463(1982)
https://doi.org/10.1021/j100393a010
|
20 |
K. F.Mak,C.Lee, J.Hone, J.Shan, and T. F.Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805(2010)
https://doi.org/10.1103/PhysRevLett.105.136805
|
21 |
G.Luo, Z. Z.Zhang, H. O.Li, X. X.Song, G. W.Deng, G.Cao, M.Xiao, and G. P.Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502(2017)
https://doi.org/10.1007/s11467-017-0652-3
|
22 |
K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science306(5696), 666(2004)
https://doi.org/10.1126/science.1102896
|
23 |
J. W.Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287(2015)
https://doi.org/10.1007/s11467-015-0459-z
|
24 |
A. P.Durajski,Influence of hole doping on the superconducting state in graphane, Supercond. Sci. Technol. 28(3), 035002(2015)
https://doi.org/10.1088/0953-2048/28/3/035002
|
25 |
X.Lin, W.Li, Y.Dong, C.Wang, Q.Chen, and H.Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49(2016)
https://doi.org/10.1016/j.commatsci.2016.07.020
|
26 |
J.Pešić, R.Gajić, K.Hingerl, and M.Belić, Strainenhanced superconductivity in Li-doped graphene, Europhys. Lett. 108(6), 67005(2014)
https://doi.org/10.1209/0295-5075/108/67005
|
27 |
J. J.Zhang, B.Gao, and S.Dong, Strain-enhanced superconductivity of MoX2 (X= S or Se) bilayers with Na intercalation, Phys. Rev. B93(15), 155430(2016)
https://doi.org/10.1103/PhysRevB.93.155430
|
28 |
G. Q.Huang, Z. W.Xing, and D. Y.Xing, Dynamical stability and superconductivity of Li-intercalated bi-layer MoS2: A first-principles prediction, Phys. Rev. B93(10), 104511(2016)
https://doi.org/10.1103/PhysRevB.93.104511
|
29 |
X.He, H.Li, Z.Zhu, Z.Dai, Y.Yang, P.Yang, Q.Zhang, P.Li, U.Schwingenschlogl, and X.Zhang, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett. 109(17), 173105(2016)
https://doi.org/10.1063/1.4966218
|
30 |
J. T.Ye, Y. J.Zhang, R.Akashi, M. S.Bahramy, R.Arita, and Y.Iwasa, Superconducting dome in a gatetuned band insulator, Science338(6111), 1193(2012)
https://doi.org/10.1126/science.1228006
|
31 |
A. P.Nayak, S.Bhattacharyya, J.Zhu, J.Liu, X.Wu, T.Pandey, C.Jin, A. K.Singh, D.Akinwande, and J.-F.Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun. 5, 3731(2014)
https://doi.org/10.1038/ncomms4731
|
32 |
Z.Chi, F.Yen, F.Peng, J.Zhu, Y.-J.Zhang, X.Chen, Z.Yang, X.Liu, Y.Ma, Y.Zhao, T.Kagayama, and Y.Iwasa, Ultrahigh pressure superconductivity in molybdenum disulfide, arXiv: 1503.05331 (2015)
|
33 |
R. B.Somoano, V.Hadek, and A.Rembaum, Alkali metal intercalates of molybdenum disulfide, J. Chem. Phys. 58(2), 697(1973)
https://doi.org/10.1063/1.1679256
|
34 |
R. B.Somoano, V.Hadek, A.Rembaum, S.Samson, and J. A.Woollam, The alkaline earth intercalates of molybenum disulfide, J. Chem. Phys. 62(3), 1068(1975)
https://doi.org/10.1063/1.430548
|
35 |
J. A.Woollamand R. B.Somoano, Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2, Phys. Rev. B13, 3843(1976)
https://doi.org/10.1103/PhysRevB.13.3843
|
36 |
G. Q.Huang, Z. W.Xing, and D. Y.Xing, Prediction of superconductivity in li-intercalated bilayer phosphorene, Appl. Phys. Lett. 106(11), 113107(2015)
https://doi.org/10.1063/1.4916100
|
37 |
Y.Saito, T.Nojima, and Y.Iwasa, Gate-induced superconductivity in two-dimensional atomic crystals, Supercond. Sci. Technol. 29(9), 093001(2016)
https://doi.org/10.1088/0953-2048/29/9/093001
|
38 |
D.Szcze¸śniak, A. P.Durajski, and R.Szcze¸śniak, Influence of lithium doping on the thermodynamic properties of graphene based superconductors, J. Phys.: Condens. Matter26(25), 255701(2014)
https://doi.org/10.1088/0953-8984/26/25/255701
|
39 |
S.Ichinokura, K.Sugawara, A.Takayama, T.Takahashi, and S.Hasegawa, Superconducting calciumintercalated bilayer graphene, ACS Nano10, 2761(2016)
https://doi.org/10.1021/acsnano.5b07848
|
40 |
J.Chapman, Y.Su, C. A.Howard, D.Kundys, A. N.Grigorenko, F.Guinea, A. K.Geim,I. V.Grigorievaand R. R.Nair, Superconductivity in Ca-doped graphene laminates, Sci. Rep. 6(1), 23254(2016)
https://doi.org/10.1038/srep23254
|
41 |
P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, G. L.Chiarotti, M.Cococcioni, I.Dabo, A. D.Corso, S.de Gironcoli, S.Fabris, G.Fratesi, and R.Gebauer, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21(39), 395502(2009)
https://doi.org/10.1088/0953-8984/21/39/395502
|
42 |
F.Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89(1), 015003(2017)
https://doi.org/10.1103/RevModPhys.89.015003
|
43 |
F.Giustino, Materials Modelling Using Density Functional Theory: Properties and Predictions, Oxford: Oxford University Press, 2014
|
44 |
J. L.Verbleand T. J.Wieting, Lattice mode degeneracy in MoS2 and other layer compounds, Phys. Rev. Lett. 25, 362(1970)
https://doi.org/10.1103/PhysRevLett.25.362
|
45 |
R.Szcze¸śniak, A. P.Durajski, and M. W.Jarosik, Metallization and superconductivity in Ca-intercalated bilayer MoS2, J. Phys. Chem. Solids111, 254(2017)
https://doi.org/10.1016/j.jpcs.2017.08.003
|
46 |
G. M.Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP11, 696(1960)
|
47 |
J. P.Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027(1990)
https://doi.org/10.1103/RevModPhys.62.1027
|
48 |
R.Szcze¸śniak, The numerical solution of the imaginaryaxis Eliashberg equations, Acta Phys. Pol. A109(2), 179(2006)
https://doi.org/10.12693/APhysPolA.109.179
|
49 |
R.Szcze¸śniakand A. P.Durajski, Superconductivity well above room temperature in compressed MgH6, Front. Phys. 11(6), 117406(2016)
https://doi.org/10.1007/s11467-016-0578-1
|
50 |
J. P.Carbotteand P.Vashishta, Condensation energy of a superconductor, Phys. Lett. A33(4), 227(1970)
https://doi.org/10.1016/0375-9601(70)90747-4
|
51 |
J.Sólyom, Fundamentals of the Physics of Solids: Volume 3- Normal, Broken-Symmetry, and Correlated Systems, Springer, 2011
|
52 |
J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162(1957)
https://doi.org/10.1103/PhysRev.106.162
|
53 |
J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Theory of superconductivity, Phys. Rev.108(5), 1175(1957)
https://doi.org/10.1103/PhysRev.108.1175
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|