Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (4) : 483-489    https://doi.org/10.1007/s11467-014-0414-4
RESEARCH ARTICLE
LDA+U calculation of structural and thermodynamic properties of Ce2O3
Bo Zhu1,Yan Cheng1,2(),Zhen-Wei Niu1,Meng Zhou1,Min Gong1,2,*()
1. College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
 Download: PDF(352 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigated the structure and thermodynamic properties of the hexagonal Ce2O3 by using LDA+U scheme in the frame of density functional theory (DFT), together with the quasi-harmonic Debye model. The obtained lattice constants, bulk modulus, and the insulating gap agree well with the available experimental data. We successfully yielded the temperature dependence of bulk modulus, volume, thermal expansion coefficient, Debye temperature, specific heat as well as the entropy at different U values. It is found that the introduction of the U value cannot only correct the calculation of the structure but also improve the accurate description of the thermodynamic properties of Ce2O3. When U = 6 eV the calculated volume (538 Bohr3) at 300 K agrees well with the experimental value (536 Bohr3). The calculated entropy curve becomes more and more close to the experimental curve with the increasing U value.

Keywords ensity functional theory      thermodynamic properties      quasi-harmonic Debye model      Ce2O3     
Corresponding Author(s): Min Gong   
Issue Date: 26 August 2014
 Cite this article:   
Bo Zhu,Yan Cheng,Zhen-Wei Niu, et al. LDA+U calculation of structural and thermodynamic properties of Ce2O3[J]. Front. Phys. , 2014, 9(4): 483-489.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0414-4
https://academic.hep.com.cn/fop/EN/Y2014/V9/I4/483
1 A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
2 M. Kobayashi and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B, 1991, 61(4): 491
doi: 10.1016/0168-583X(91)95327-A
3 H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 1985, 131(2-3): 221
doi: 10.1016/0022-3115(85)90460-X
4 B. H. Justice and E. F. Westrum, Thermophysical properties of the lanthanide oxides. V. Heat capacity, thermodynamic properties, and energy levels of cerium(III) oxide, J. Phys. Chem., 1969, 73(6): 1959
doi: 10.1021/j100726a052
5 M. E. Huntelaar, A. S. Booij, E. H. P. Cordfunke, R. R. van der Laan, A. C. G. van Genderen, and J. C. van Miltenburg, The thermodynamic properties of Ce2O3 (s) from T→ 0 K to 1500 K, J. Chem. Thermodyn., 2000, 32(4): 465
doi: 10.1006/jcht.1999.0614
6 N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, and B. I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Phys. Rev. B, 2001, 64(11): 115108
doi: 10.1103/PhysRevB.64.115108
7 A. J. Cohen, P. Mori-sanchez, and W. T. Yang, Insights into current limitations of density functional theory, Science, 2008, 321(5890): 792
doi: 10.1126/science.1158722
8 H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett., 2009, 102(12): 126403
doi: 10.1103/PhysRevLett.102.126403
9 N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, Quantum origin of the oxygen storage capability of ceria, Phys<?Pub Caret?>. Rev. Lett., 2002, 89(16): 166601
doi: 10.1103/PhysRevLett.89.166601
10 C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B, 2007, 75(3): 035115
doi: 10.1103/PhysRevB.75.035115
11 D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2O3, and CeO2-x in the LDA+U formalism, Phys. Rev. B, 2007, 75(3): 035109
doi: 10.1103/PhysRevB.75.035109
12 J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study of the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3, J. Chem. Theory Comput., 2011, 7(1): 56
doi: 10.1021/ct100430q
13 Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys., 2013, 8(4): 405
doi: 10.1007/s11467-013-0331-y
14 M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, 64(4): 1045
doi: 10.1103/RevModPhys.64.1045
15 V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem., 2000, 77(5): 895
doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
16 A. Otero-de-la-Roza and V. Lua?a, Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data, Comput. Phys. Commun., 2011, 182(8): 1708
doi: 10.1016/j.cpc.2011.04.016
17 A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Lua?a, GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun., 2011, 182(10): 2232
doi: 10.1016/j.cpc.2011.05.009
18 S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 1980, 58(8): 1200
doi: 10.1139/p80-159
19 V. I. Anisimov, I. V. Solovyev, and M. A. Korotin, Densityfunctional theory and NiO photoemission spectra, Phys. Rev. B, 1993, 48(23): 16929
doi: 10.1103/PhysRevB.48.16929
20 M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B, 2005, 71(3): 035105
doi: 10.1103/PhysRevB.71.035105
21 H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188
doi: 10.1103/PhysRevB.13.5188
22 L. Y. Lu, X. R. Chen, B. R. Yu, and Q. Q. Gou, Firstprinciples calculations for transition phase and thermodynamic properties of GaAs, Chin. Phys., 2006, 15(4): 802
doi: 10.1088/1009-1963/15/4/022
23 X. L. Zhou, K. Liu, X. R. Chen, and J. Zhu, Structural and thermodynamic properties of AlB2 compound, Chin. Phys., 2006, 15(12): 3014
doi: 10.1088/1009-1963/15/12/040
24 Y. J. Hao, Y. Cheng, Y. J. Wang, and X. R. Chen, Elastic and thermodynamic properties of c-BN from first-principles calculations, Chin. Phys., 2007, 16(1): 217
doi: 10.1088/1009-1963/16/1/037
25 J. Chang, X. R. Chen, W. Zhang, and J. Zhu, Firstprinciples investigations on elastic and thermodynamic properties of zinc-blende structure BeS, Chin. Phys. B, 2008, 17(4): 1377
doi: 10.1088/1674-1056/17/4/037
26 X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfe, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter, 2009, 21(2): 025505
doi: 10.1088/0953-8984/21/2/025505
27 H. Z. Guo, X. R. Chen, L. C. Cai, and J. Gao, Structural and thermodynamic properties of MgB2 from first-principles calculations, Solid State Commun., 2005, 134(3): 787
doi: 10.1016/j.ssc.2005.03.040
28 X. L. Yuan, D. Q.Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comp. Mater. Sci., 2012, 58(2) : 125
doi: 10.1016/j.commatsci.2012.02.019
29 H. Barnighausen and G. Schiller, The crystal structure of alfa-Ce2O3, J. Less-Common Met., 1985, 110(1-2): 385
doi: 10.1016/0022-5088(85)90347-9
30 P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 2006, 125(3): 034712
doi: 10.1063/1.2206184
31 J. Heyd and G. E. Scuseria, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys., 2004, 120(16): 7274
doi: 10.1063/1.1668634
32 F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809
doi: 10.1103/PhysRev.71.809
33 A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X= O, S, Se) in the lanthanide series, J. Alloy. Comp., 1996, 242(1-2): 41
doi: 10.1016/0925-8388(96)02293-1
34 G. Y. Adachi and N. Imanaka, The binary rare earth oxides, Chem. Rev., 1998, 98: 1479
doi: 10.1021/cr940055h
[1] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[2] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[3] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[4] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[5] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[6] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[7] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[8] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[9] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[10] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[11] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
[12] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[13] Juan Ren,Ning-Chao Zhang,Peng Wang,Chao Ning,Hong Zhang,Xiao-Juan Peng. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs[J]. Front. Phys. , 2016, 11(2): 118101-.
[14] Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb[J]. Front. Phys. , 2015, 10(4): 107101-.
[15] Zhao-Xi Li(李兆玺), Zhen-Hua Zhang(张振华), Peng-Wei Zhao(赵鹏巍). Shape coexistence and α-decay chains of 293Lv[J]. Front. Phys. , 2015, 10(3): 102101-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed