|
|
LDA+U calculation of structural and thermodynamic properties of Ce2O3 |
Bo Zhu1,Yan Cheng1,2( ),Zhen-Wei Niu1,Meng Zhou1,Min Gong1,2,*( ) |
1. College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
|
|
Abstract We investigated the structure and thermodynamic properties of the hexagonal Ce2O3 by using LDA+U scheme in the frame of density functional theory (DFT), together with the quasi-harmonic Debye model. The obtained lattice constants, bulk modulus, and the insulating gap agree well with the available experimental data. We successfully yielded the temperature dependence of bulk modulus, volume, thermal expansion coefficient, Debye temperature, specific heat as well as the entropy at different U values. It is found that the introduction of the U value cannot only correct the calculation of the structure but also improve the accurate description of the thermodynamic properties of Ce2O3. When U = 6 eV the calculated volume (538 Bohr3) at 300 K agrees well with the experimental value (536 Bohr3). The calculated entropy curve becomes more and more close to the experimental curve with the increasing U value.
|
Keywords
ensity functional theory
thermodynamic properties
quasi-harmonic Debye model
Ce2O3
|
Corresponding Author(s):
Min Gong
|
Issue Date: 26 August 2014
|
|
1 |
A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
|
2 |
M. Kobayashi and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B, 1991, 61(4): 491 doi: 10.1016/0168-583X(91)95327-A
|
3 |
H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 1985, 131(2-3): 221 doi: 10.1016/0022-3115(85)90460-X
|
4 |
B. H. Justice and E. F. Westrum, Thermophysical properties of the lanthanide oxides. V. Heat capacity, thermodynamic properties, and energy levels of cerium(III) oxide, J. Phys. Chem., 1969, 73(6): 1959 doi: 10.1021/j100726a052
|
5 |
M. E. Huntelaar, A. S. Booij, E. H. P. Cordfunke, R. R. van der Laan, A. C. G. van Genderen, and J. C. van Miltenburg, The thermodynamic properties of Ce2O3 (s) from T→ 0 K to 1500 K, J. Chem. Thermodyn., 2000, 32(4): 465 doi: 10.1006/jcht.1999.0614
|
6 |
N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, and B. I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Phys. Rev. B, 2001, 64(11): 115108 doi: 10.1103/PhysRevB.64.115108
|
7 |
A. J. Cohen, P. Mori-sanchez, and W. T. Yang, Insights into current limitations of density functional theory, Science, 2008, 321(5890): 792 doi: 10.1126/science.1158722
|
8 |
H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett., 2009, 102(12): 126403 doi: 10.1103/PhysRevLett.102.126403
|
9 |
N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, Quantum origin of the oxygen storage capability of ceria, Phys<?Pub Caret?>. Rev. Lett., 2002, 89(16): 166601 doi: 10.1103/PhysRevLett.89.166601
|
10 |
C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B, 2007, 75(3): 035115 doi: 10.1103/PhysRevB.75.035115
|
11 |
D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2O3, and CeO2-x in the LDA+U formalism, Phys. Rev. B, 2007, 75(3): 035109 doi: 10.1103/PhysRevB.75.035109
|
12 |
J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study of the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3, J. Chem. Theory Comput., 2011, 7(1): 56 doi: 10.1021/ct100430q
|
13 |
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys., 2013, 8(4): 405 doi: 10.1007/s11467-013-0331-y
|
14 |
M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, 64(4): 1045 doi: 10.1103/RevModPhys.64.1045
|
15 |
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem., 2000, 77(5): 895 doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
|
16 |
A. Otero-de-la-Roza and V. Lua?a, Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data, Comput. Phys. Commun., 2011, 182(8): 1708 doi: 10.1016/j.cpc.2011.04.016
|
17 |
A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Lua?a, GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun., 2011, 182(10): 2232 doi: 10.1016/j.cpc.2011.05.009
|
18 |
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 1980, 58(8): 1200 doi: 10.1139/p80-159
|
19 |
V. I. Anisimov, I. V. Solovyev, and M. A. Korotin, Densityfunctional theory and NiO photoemission spectra, Phys. Rev. B, 1993, 48(23): 16929 doi: 10.1103/PhysRevB.48.16929
|
20 |
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B, 2005, 71(3): 035105 doi: 10.1103/PhysRevB.71.035105
|
21 |
H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188 doi: 10.1103/PhysRevB.13.5188
|
22 |
L. Y. Lu, X. R. Chen, B. R. Yu, and Q. Q. Gou, Firstprinciples calculations for transition phase and thermodynamic properties of GaAs, Chin. Phys., 2006, 15(4): 802 doi: 10.1088/1009-1963/15/4/022
|
23 |
X. L. Zhou, K. Liu, X. R. Chen, and J. Zhu, Structural and thermodynamic properties of AlB2 compound, Chin. Phys., 2006, 15(12): 3014 doi: 10.1088/1009-1963/15/12/040
|
24 |
Y. J. Hao, Y. Cheng, Y. J. Wang, and X. R. Chen, Elastic and thermodynamic properties of c-BN from first-principles calculations, Chin. Phys., 2007, 16(1): 217 doi: 10.1088/1009-1963/16/1/037
|
25 |
J. Chang, X. R. Chen, W. Zhang, and J. Zhu, Firstprinciples investigations on elastic and thermodynamic properties of zinc-blende structure BeS, Chin. Phys. B, 2008, 17(4): 1377 doi: 10.1088/1674-1056/17/4/037
|
26 |
X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfe, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter, 2009, 21(2): 025505 doi: 10.1088/0953-8984/21/2/025505
|
27 |
H. Z. Guo, X. R. Chen, L. C. Cai, and J. Gao, Structural and thermodynamic properties of MgB2 from first-principles calculations, Solid State Commun., 2005, 134(3): 787 doi: 10.1016/j.ssc.2005.03.040
|
28 |
X. L. Yuan, D. Q.Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comp. Mater. Sci., 2012, 58(2) : 125 doi: 10.1016/j.commatsci.2012.02.019
|
29 |
H. Barnighausen and G. Schiller, The crystal structure of alfa-Ce2O3, J. Less-Common Met., 1985, 110(1-2): 385 doi: 10.1016/0022-5088(85)90347-9
|
30 |
P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 2006, 125(3): 034712 doi: 10.1063/1.2206184
|
31 |
J. Heyd and G. E. Scuseria, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys., 2004, 120(16): 7274 doi: 10.1063/1.1668634
|
32 |
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809 doi: 10.1103/PhysRev.71.809
|
33 |
A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X= O, S, Se) in the lanthanide series, J. Alloy. Comp., 1996, 242(1-2): 41 doi: 10.1016/0925-8388(96)02293-1
|
34 |
G. Y. Adachi and N. Imanaka, The binary rare earth oxides, Chem. Rev., 1998, 98: 1479 doi: 10.1021/cr940055h
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|