Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 63502    https://doi.org/10.1007/s11467-020-0980-6
RESEARCH ARTICLE
Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain
Zhitao Cui1,2, Wei Du1, Chengwei Xiao2, Qiaohong Li3, Rongjian Sa4(), Chenghua Sun5(), Zuju Ma1()
1. School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
3. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
4. Institute of Oceanography, Ocean College, Minjiang University, Fuzhou 350108, China
5. Department of Chemistry and Biotechnology, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
 Download: PDF(2576 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt–SACs for HER. The novel HER activity is attributed to (i) the B– doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)–(B)–(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.

Keywords MoS2      stress engineering      single-atom catalyst      HER      charge transfer      DFT      heterojunctions     
Corresponding Author(s): Rongjian Sa,Chenghua Sun,Zuju Ma   
Issue Date: 08 September 2020
 Cite this article:   
Zhitao Cui,Wei Du,Chengwei Xiao, et al. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0980-6
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/63502
1 Q. Ding, B. Song, P. Xu, and S. Jin, Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds, Chem. 1(5), 699 (2016)
https://doi.org/10.1016/j.chempr.2016.10.007
2 J. R. McKone, N. S. Lewis, and H. B. Gray, Will solardriven water-splitting devices see the light of day? Chem. Mater. 26(1), 407 (2014)
https://doi.org/10.1021/cm4021518
3 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
https://doi.org/10.1021/cr1002326
4 A. J. Bard and M. A. Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res. 28(3), 141 (1995)
https://doi.org/10.1021/ar00051a007
5 Z. Wang, J. Qin, Q. Hu, D. Wang, F. Wang, Y. Zhong, J. Zhang, H. Zhou, M. Dong, and C. Hu, Theoretical investigation of molybdenum/tungsten-vanadium solid solution alloy membranes: Thermodynamic stability and hydrogen permeation, J. Membrane Sci. 608, 118200 (2020)
https://doi.org/10.1016/j.memsci.2020.118200
6 Y. Zhao, F. Liu, J. Tan, P. Li, Z. Wang, K. Zhu, X. Mai, H. Liu, X. Wang, and Y. Ma, Preparation and hydrogen storage of Pd/MIL-101 nanocomposites, J. Alloys Compounds 772, 186 (2019)
https://doi.org/10.1016/j.jallcom.2018.09.045
7 Q. Chen, Q. Yin, A. Dong, Y. Gao, Y. Qian, D. Wang, M. Dong, Q. Shao, H. Liu, and B.-H. Han, Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis, J. Polymer 169, 255 (2019)
https://doi.org/10.1016/j.polymer.2019.02.056
8 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
https://doi.org/10.1149/1.1856988
9 J. O’M. Bockris and E. C. Potter, The mechanism of the cathodic hydrogen evolution reaction, J. Electrochem. Soc. 99, 169 (1952)
https://doi.org/10.1149/1.2779692
10 B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, and Z. Guo, Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions, Dalton Trans. 48(23), 8279 (2019)
https://doi.org/10.1039/C9DT01218D
11 Z. Lin, B. Lin, Z. Wang, S. Chen, C. Wang, M. Dong, Q. Gao, Q. Shao, T. Ding, H. Liu, S. Wu, and Z. Guo, Facile preparation of 1T/2H-Mo (S1−xSex)2 nanoparticles for boosting hydrogen evolution reaction, ChemCatChem 11(8), 2217 (2019)
https://doi.org/10.1002/cctc.201900095
12 T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, Solar energy supply and storage for the legacy and Nonlegacy worlds, Chem. Rev. 110(11), 6474 (2010)
https://doi.org/10.1021/cr100246c
13 B. You, M. T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, and H. Li, Enhancing electrocatalytic water splitting by strain Engineering, Adv. Mater. 31(17), 1807001 (2019)
https://doi.org/10.1002/adma.201807001
14 D. Y. Chung, S. K. Park, Y. H. Chung, S. H. Yu, D. H. Lim, N. Jung, H. C. Ham, H. Y. Park, Y. Piao, S. J. Yoo, and Y. E. Sung, Edge-exposed MoS2 nanoassembled structures as efficient electrocatalysts for hydrogen evolution reaction, Nanoscale 6(4), 2131 (2014)
https://doi.org/10.1039/C3NR05228A
15 H. T. Du, R. M. Kong, X. X. Guo, F. L. Qu, and J. H. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution, Nanoscale 10(46), 21617 (2018)
https://doi.org/10.1039/C8NR07891B
16 Y. Hong, E. L. Liu, J. Y. Shi, X. Lin, L. Z. Sheng, M. Zhang, L. Y. Wang, and J. H. Chen, A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution, Int. J. Hydrogen Energy 44(14), 7194 (2019)
https://doi.org/10.1016/j.ijhydene.2019.01.274
17 C. B. Ma, X. Y. Qi, B. Chen, S. Y. Bao, Z. Y. Yin, X. J. Wu, Z. M. Luo, J. Wei, H. L. Zhang, and H. Zhang, MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction, Nanoscale 6(11), 5624 (2014)
https://doi.org/10.1039/c3nr04975b
18 Z. J. Ma, Z. T. Cui, Y. H. Lv, R. J. Sa, K. C. Wu, and Q. H. Li, Three-in-one: Opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S Co-doping, Int. J. Hydrogen Energy 45(7), 4534 (2020)
https://doi.org/10.1016/j.ijhydene.2019.12.074
19 Z. J. Ma, R. J. Sa, Q. H. Li, and K. C. Wu, Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: Insights into high efficiency for photocatalytic solar water splitting,Phys. Chem. Chem. Phys. 18(2), 1050 (2016)
https://doi.org/10.1039/C5CP05847C
20 Y. Pan and M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction, Int. J. Hydrogen Energy 43(49), 22055 (2018)
https://doi.org/10.1016/j.ijhydene.2018.10.093
21 Z. H. Pu, I. S. Amiinu, M. Wang, Y. S. Yang, and S. C. Mu, Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range, Nanoscale 8(16), 8500 (2016)
https://doi.org/10.1039/C6NR00820H
22 Y. Q. Sun, L. F. Hang, Q. Shen, T. Zhang, H. L. Li, X. M. Zhang, X. J. Lyu, and Y. Li, Mo doped Ni2P nanowire arrays: An efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values, Nanoscale 9(43), 16674 (2017)
https://doi.org/10.1039/C7NR03515B
23 S. Zhou, X. W. Yang, W. Pei, N. S. Liu, and J. J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts, Nanoscale 10(23), 10876 (2018)
https://doi.org/10.1039/C8NR01090K
24 X. Li, P. Wang, Y. Q. Wu, Z. H. Liu, Q. Q. Zhang, T. T. Zhang, Z. Y. Wang, Y. Y. Liu, Z. K. Zheng, and B. B. Huang, ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production, Front. Phys. 15(2), 23604 (2020)
https://doi.org/10.1007/s11467-020-0958-4
25 X. Zhang, X. Li, F. Jiang, W. Du, C. Hou, Z. Xu, L. Zhu, Z. Wang, H. Liu, W. Zhou, and H. Yuan, Improved electrochemical performance of 2D accordion-like MnV2O6 nanosheets as anode materials for Li-ion batteries, Dalton Trans. 49(6), 1794 (2020)
https://doi.org/10.1039/C9DT03845K
26 C. Hou, Y. Hou, Y. Fan, Y. Zhai, Y. Wang, Z. Sun, R. Fan, F. Dang, and J. Wang, Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6967 (2018)
https://doi.org/10.1039/C8TA00975A
27 C. Hou, J. Wang, W. Du, J. Wang, Y. Du, C. Liu, J. Zhang, H. Hou, F. Dang, L. Zhao, and Z. Guo, One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage, J. Mater. Chem. A Mater. Energy Sustain. 7(22), 13460 (2019)
https://doi.org/10.1039/C9TA03551F
28 M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
29 M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)
https://doi.org/10.1021/cr300263a
30 R. R. Chianelli, M. H. Siadati, M. P. De la Rosa, G. Berhault, J. P. Wilcoxon, R. Jr Bearden, and B. L. Abrams, Catalytic properties of single layers of transition metal sulfide catalytic materials, Catal. Rev. 48(1), 1 (2006)
https://doi.org/10.1080/01614940500439776
31 J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
32 H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of singlelayer MoS2, Front. Phys. 13(4), 137307 (2018)
https://doi.org/10.1007/s11467-018-0797-8
33 J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
34 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically Thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
35 P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, Ab initiostudy of the H2+–H2 S/MoS2 gas–solid interface: The nature of the catalytically active sites, J. Catal. 189(1), 129 (2000)
https://doi.org/10.1006/jcat.1999.2698
36 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)
https://doi.org/10.1038/nmat4465
37 D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett. 13(3), 1341 (2013)
https://doi.org/10.1021/nl400258t
38 Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 Nanoparticles Grown on Graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
https://doi.org/10.1021/ja201269b
39 Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials, Nano Lett. 11(10), 4168 (2011)
https://doi.org/10.1021/nl2020476
40 J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. D. Lou, and Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv. Mater. 25(40), 5807 (2013)
https://doi.org/10.1002/adma.201302685
41 J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11(11), 963 (2012)
https://doi.org/10.1038/nmat3439
42 H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, and Y. Cui, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution, Nano Res. 8(2), 566 (2015)
https://doi.org/10.1007/s12274-014-0677-7
43 R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, X. Wang, and T. Zhang, Hydroformylation of olefins by a rhodium singleatom catalyst with activity comparable to RhCl(PPh3)3, Angew. Chem. Int. Ed. 55(52), 16054 (2016)
https://doi.org/10.1002/anie.201607885
44 P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, and N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts, Science 352(6287), 797 (2016)
https://doi.org/10.1126/science.aaf5251
45 F. Chen, X. Jiang, L. Zhang, R. Lang, and B. Qiao, Single-atom catalysis: Bridging the homo- and heterogeneous catalysis, Chin. J. Catal. 39(5), 893 (2018)
https://doi.org/10.1016/S1872-2067(18)63047-5
46 Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, and Y. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications, Joule 2(7), 1242 (2018)
https://doi.org/10.1016/j.joule.2018.06.019
47 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Sci 355(6321), eaad4998 (2017)
https://doi.org/10.1126/science.aad4998
48 L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, and X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis, Nat. Commun. 7(1), 10667 (2016)
https://doi.org/10.1038/ncomms10667
49 H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, and P. Zelenay, Direct atomic-level insight into the active sites of a high-performance PGMfree ORR catalyst, Science 357(6350), 479 (2017)
https://doi.org/10.1126/science.aan2255
50 Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, and Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction, Angew. Chem. Int. Ed. 56(24), 6937 (2017)
https://doi.org/10.1002/anie.201702473
51 A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G. F. Harrington, S. M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, and F. Jaouen, Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction, Nat. Mater. 8, 957 (2017)
https://doi.org/10.1038/s41467-017-01100-7
52 Z. Ma, Z. Cui, C. Xiao, W. Dai, Y. Lv, Q. Li, and R. Sa, Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer, Nanoscale 12(3), 1541 (2020)
https://doi.org/10.1039/C9NR08969A
53 J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, and G. Wang, Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction, Nat. Catal. 1(12), 985 (2018)
https://doi.org/10.1038/s41929-018-0195-1
54 T. He, S. M. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. P. Hu, and X. Wang, Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms, Angew. Chem. Int. Ed. 57(13), 3493 (2018)
https://doi.org/10.1002/anie.201800817
55 Y. Guo, S. Mei, K. Yuan, D. J. Wang, H. C. Liu, C. H. Yan, and Y. W. Zhang, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metalsupport interactions and H-spillover effect, ACS Catal. 8(7), 6203 (2018)
https://doi.org/10.1021/acscatal.7b04469
56 C. H. Zhang, J. W. Sha, H. L. Fei, M. J. Liu, S. Yazdi, J. B. Zhang, Q. F. Zhong, X. L. Zou, N. Q. Zhao, H. S. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J. C. Dong, D. L. Chen, and J. M. Tour, Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium, ACS Nano 11(7), 6930 (2017)
https://doi.org/10.1021/acsnano.7b02148
57 T. Yang, T. T. Song, J. Zhou, S. J. Wang, D. Z. Chi, L. Shen, M. Yang, and Y. P. Feng, High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation, Nano Energy 68, 104304 (2020)
https://doi.org/10.1016/j.nanoen.2019.104304
58 L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lue, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, and H. L. Xin, Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation, Angew. Chem. Int. Ed. 58(8), 2321 (2019)
https://doi.org/10.1002/anie.201811728
59 Y. T. Qu, Z. J. Li, W. X. Chen, Y. Lin, T. W. Yuan, Z. K. Yang, C. M. Zhao, J. Wang, C. Zhao, X. Wang, F. Y. Zhou, Z. B. Zhuang, Y. Wu, and Y. D. Li, Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms, Nat. Catal. 1(10), 781 (2018)
https://doi.org/10.1038/s41929-018-0146-x
60 M. D. Marcinkowski, M. T. Darby, J. L. Liu, J. M. Wimble, F. R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation, Nat. Chem. 10(3), 325 (2018)
https://doi.org/10.1038/nchem.2915
61 Y. Zhou, G. Gao, Y. Li, W. Chu, and L. W. Wang, Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: A theoretical study, Phys. Chem. Chem. Phys. 21(6), 3024 (2019)
https://doi.org/10.1039/C8CP06755D
62 L. Yang, D. Cheng, X. Zeng, X. Wan, J. Shui, Z. Xiang, and D. Cao, Unveiling the high-activity origin of singleatom iron catalysts for oxygen reduction reaction, Proc. Natl. Acad. Sci. USA 115(26), 6626 (2018)
https://doi.org/10.1073/pnas.1800771115
63 X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, and G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30(11), 1706758 (2018)
https://doi.org/10.1002/adma.201706758
64 X. J. Cui, J. P. Xiao, Y. H. Wu, P. P. Du, R. Si, H. X. Yang, H. F. Tian, J. Q. Li, W. H. Zhang, D. H. Deng, and X. H. Bao, A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells, Angew. Chem. Int. Ed. 55(23), 6708 (2016)
https://doi.org/10.1002/anie.201602097
65 Q. Tang and D. E. Jiang, Phosphorene-supported transition-metal dimer for effective N2 electroreduction, ChemPhysChem 20(22), 3141 (2019)
https://doi.org/10.1002/cphc.201900279
66 Y. Cao, S. Deng, Q. Fang, X. Sun, C. Zhao, J. Zheng, Y. Gao, H. Zhuo, Y. Li, Z. Yao, Z. Wei, X. Zhong, G. Zhuang, and J. Wang, Single and double boron atoms doped nanoporous C2N-h2D electrocatalysts for highly efficient N2 reduction reaction: A density functional theory study, Nanotechnology 30(33), 335403 (2019)
https://doi.org/10.1088/1361-6528/ab1d01
67 M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, and H. Braunschweig, Nitrogen fixation and reduction at boron, Science 359(6378), 896 (2018)
https://doi.org/10.1126/science.aaq1684
68 S. Zheng, S. Li, Z. Mei, Z. Hu, M. Chu, J. Liu, X. Chen, and F. Pan, Electrochemical nitrogen reduction reaction performance of single-boron catalysts tuned by MXene substrates, J. Phys. Chem. Lett. 10(22), 6984 (2019)
https://doi.org/10.1021/acs.jpclett.9b02741
69 C. Ling, X. Niu, Q. Li, A. Du, and J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light, J. Am. Chem. Soc. 140(43), 14161 (2018)
https://doi.org/10.1021/jacs.8b07472
70 K. Bhattacharyya and A. Datta, Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation, Phys. Chem. Chem. Phys. 21(23), 12346 (2019)
https://doi.org/10.1039/C9CP00997C
71 Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, and S. Z. Qiao, Non-metal single-iodineatom electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 58(35), 12252 (2019)
https://doi.org/10.1002/anie.201905554
72 C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)
https://doi.org/10.1021/jacs.8b13165
73 B. T. Sneed, A. P. Young, and C. K. Tsung, Building up strain in colloidal metal nanoparticle catalysts, Nanoscale 7(29), 12248 (2015)
https://doi.org/10.1039/C5NR02529J
74 M. Luo and S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater. 2(11), 17059 (2017)
https://doi.org/10.1038/natrevmats.2017.59
75 M. Tang, L. Liu, Y. Cheng, and G. F. Ji, First-principles study of structural, elastic, and electronic properties of CeB6 under pressure, Front. Phys. 10(6), 107104 (2015)
https://doi.org/10.1007/s11467-015-0509-6
76 X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, and W. Du, Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application, J. Chem. Eng. 396, 125205 (2020)
https://doi.org/10.1016/j.cej.2020.125205
77 E. L. Clark, C. Hahn, T. F. Jaramillo, and A. T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity, J. Am. Chem. Soc. 139(44), 15848 (2017)
https://doi.org/10.1021/jacs.7b08607
78 Z. Lu, G. Chen, Y. Li, H. Wang, J. Xie, L. Liao, C. Liu, Y. Liu, T. Wu, Y. Li, A. C. Luntz, M. Bajdich, and Y. Cui, Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction, J. Am. Chem. Soc. 139(17), 6270 (2017)
https://doi.org/10.1021/jacs.7b02622
79 T. A. Maark and A. A. Peterson, Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces,J. Phys. Chem. C 118(8), 4275 (2014)
https://doi.org/10.1021/jp4121035
80 J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, and H. N. Lee, Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites, J. Am. Chem. Soc. 138(8), 2488 (2016)
https://doi.org/10.1021/jacs.5b11713
81 B. T. Sneed, C. N. Brodsky, C. H. Kuo, L. K. Lamontagne, Y. Jiang, Y. Wang, F. Tao, W. Huang, and C. K. Tsung, Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis, J. Am. Chem. Soc. 135(39), 14691 (2013)
https://doi.org/10.1021/ja405387q
82 P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, and A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem. 2(6), 454 (2010)
https://doi.org/10.1038/nchem.623
83 H. A. Tahini, X. Tan, U. Schwingenschlogl, and S. C. Smith, Formation and migration of oxygen vacancies in SrCoO3 and their effect on oxygen evolution reactions, ACS Catal. 6(8), 5565 (2016)
https://doi.org/10.1021/acscatal.6b00937
84 M. Mavrikakis, B. Hammer, and J. K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(13), 2819 (1998)
https://doi.org/10.1103/PhysRevLett.81.2819
85 S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nat. Mater. 7(4), 333 (2008)
https://doi.org/10.1038/nmat2156
86 M. Du, L. Cui, Y. Cao, and A. J. Bard, Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate, J. Am. Chem. Soc. 137(23), 7397 (2015)
https://doi.org/10.1021/jacs.5b03034
87 M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Gronbjerg, B. P. Knudsen, A. K. Jepsen, J. Rossmeisl, I. E. Stephens, and I. Chorkendorff, Pt5Gd as a highly active and stable catalyst for oxygen electroreduction, J. Am. Chem. Soc. 134(40), 16476 (2012)
https://doi.org/10.1021/ja306348d
88 H. Shi, H. Pan, Y. W. Zhang, and B. I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2, Phys. Rev. B 87(15), 155304 (2013)
https://doi.org/10.1103/PhysRevB.87.155304
89 E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Res. 5(1), 43 (2012)
https://doi.org/10.1007/s12274-011-0183-0
90 H. Pan and Y. W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering, J. Phys. Chem. C 116(21), 11752 (2012)
https://doi.org/10.1021/jp3015782
91 P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
92 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
93 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
94 A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal, and S. C. Smith, Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response, J. Am. Chem. Soc. 134(9), 4393 (2012)
https://doi.org/10.1021/ja211637p
95 S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)
https://doi.org/10.1002/jcc.20078
96 F. Li and Q. Tang, A di-boron pair doped MoS2 (B2@MoS2) single-layer shows superior catalytic performance for electrochemical nitrogen activation and reduction, Nanoscale 11(40), 18769 (2019)
https://doi.org/10.1039/C9NR06469A
97 D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, and Z. Yang, The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A firstprinciples study, Appl. Surf. Sci. 383, 98 (2016)
https://doi.org/10.1016/j.apsusc.2016.04.171
98 J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5(11), 909 (2006)
https://doi.org/10.1038/nmat1752
99 B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127(15), 5308 (2005)
https://doi.org/10.1021/ja0504690
100 Á. Valdés, Z.-W. Qu, G.-J. Kroes, J. Rossmeisl, and J. K. Nørskov, Oxidation and photo-oxidation of water on TiO2 surface, J. Phys. Chem. C 112(26), 9872 (2008)
https://doi.org/10.1021/jp711929d
101 J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, and J. K. Norskov, Electrolysis of water on oxide surfaces, J. Electroanal. Chem. 607(1–2), 83 (2007)
https://doi.org/10.1016/j.jelechem.2006.11.008
102 NIST Standard Reference Database 13,
103 L. Peng, X. Zheng, L. Li, L. Zhang, N. Yang, K. Xiong, H. Chen, J. Li, and Z. Wei, Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction, Appl. Catal. B 245, 122 (2019)
https://doi.org/10.1016/j.apcatb.2018.12.035
104 X. Lin, W. Li, Y. Dong, C. Wang, Q. Chen, and H. Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49 (2016)
https://doi.org/10.1016/j.commatsci.2016.07.020
105 X. Wen, S. Yu, Y. Wang, Y. Liu, H. Wang, and J. Zhao, Doping MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: A computational study, New J. Chem. 43(15), 5766 (2019)
https://doi.org/10.1039/C9NJ00466A
106 D. Yang, S. J. Sandoval, W. M. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Structure of single-molecular-layer MoS2, Phys. Rev. B 43(14), 12053 (1991)
https://doi.org/10.1103/PhysRevB.43.12053
107 H. Cui, X. Zhang, G. Zhang, and J. Tang, Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method, Appl. Surf. Sci. 470, 1035 (2019)
https://doi.org/10.1016/j.apsusc.2018.11.230
108 D. Ma, Y. Tang, G. Yang, J. Zeng, C. He, and Z. Lu, CO catalytic oxidation on iron-embedded monolayer MoS2, Appl. Surf. Sci. 328, 32871 (2015)
https://doi.org/10.1016/j.apsusc.2014.12.024
109 D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Y. Tang, Z. Lu, and Z. Yang, Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals, Appl. Surf. Sci. 364, 181 (2016)
https://doi.org/10.1016/j.apsusc.2015.12.142
110 S. Bertolazzi, J. Brivio, and A. Kis, Stretching and Breaking of Ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
https://doi.org/10.1021/nn203879f
111 A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets, Adv. Mater. 24(6), 772 (2012)
https://doi.org/10.1002/adma.201103965
112 J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. USA 108(3), 937 (2011)
https://doi.org/10.1073/pnas.1006652108
113 B. Liu, Y. Jin, G. Xie, Z. Wang, H. Wen, N. Ren, and D. Xing, Simultaneous photo catalysis of SiC/Fe3O4 nanoparticles and photo-fermentation of rhodopseudomonas sp. nov. strain A7 for enhancing hydrogen production under visible light irradiation, ES Energy and Environment 1, 56 (2018)
114 P. Yang, H. Zhao, Y. Yang, P. Zhao, X. Zhao, and L. Yang, Fabrication of N, P-codoped Mo2C/carbon nanofibers via electrospinning as electrocatalyst for hydrogen evolution reaction, ES Materials & Manufacturing 7, 34 (2020)
https://doi.org/10.30919/esmm5f618
115 N. Singh, S. Jana, G. P. Singh, and R. Dey, Graphenesupported TiO2: Study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation, Adv. Compos. Hybrid Mater 3, 127 (2020)
https://doi.org/10.1007/s42114-020-00140-w
116 Q. Yuan, R. Wang, Q. Wang, P. Sun, R. Nie, and X. Wang, Ultrathin MoSe2 nanosheets coated on hollow carbon spheres as efficient hybrid catalyst for hydrogen evolution reaction, ES Mater. Manuf. 2(8), 5087 (2018)
117 D. Lloyd, X. Liu, N. Boddeti, L. Cantley, R. Long, M. L. Dunn, and J. S. Bunch, Adhesion, stiffness, and instability in atomically thin MoS2 bubbles, Nano Lett. 17(9), 5329 (2017)
https://doi.org/10.1021/acs.nanolett.7b01735
118 J. H. Lin, H. Zhang, X. L. Cheng, and Y. Miyamoto, Single-layer group IV–V and group V–IV–III–VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis, Phys. Rev. B 96(3), 035438 (2017)
https://doi.org/10.1103/PhysRevB.96.035438
119 H. R. Jappor, Electronic structure of novel GaS/GaSe heterostructures based on GaS and GaSe monolayers, Physica B 524, 109 (2017)
https://doi.org/10.1016/j.physb.2017.08.054
120 Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initiostudy, Nanoscale 3(9), 3883 (2011)
https://doi.org/10.1039/c1nr10577a
[1] Zhan-Chun Tu. Abstract models for heat engines[J]. Front. Phys. , 2021, 16(3): 33202-.
[2] Chao Zhang, Fuming Xu, Jian Wang. Full counting statistics of phonon transport in disordered systems[J]. Front. Phys. , 2021, 16(3): 33502-.
[3] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[4] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[5] Lin Ju, Mei Bie, Xiwei Zhang, Xiangming Chen, Liangzhi Kou. Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses[J]. Front. Phys. , 2021, 16(1): 13201-.
[6] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[7] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[8] Michael L. Goodman, Chiman Kwan, Bulent Ayhan, Eric L. Shang. A new approach to solar flare prediction[J]. Front. Phys. , 2020, 15(3): 34601-.
[9] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[10] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[11] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[12] Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun. Directional quantum random walk induced by coherence[J]. Front. Phys. , 2020, 15(2): 21602-.
[13] Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603-.
[14] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[15] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed