Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (3) : 33502    https://doi.org/10.1007/s11467-020-1027-8
RESEARCH ARTICLE
Full counting statistics of phonon transport in disordered systems
Chao Zhang, Fuming Xu(), Jian Wang()
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
 Download: PDF(1735 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The coherent potential approximation (CPA) within full counting statistics (FCS) formalism is shown to be a suitable method to investigate average electric conductance, shot noise as well as higher order cumulants in disordered systems. We develop a similar FCS-CPA formalism for phonon transport through disordered systems. As a byproduct, we derive relations among coefficients of different phonon current cumulants. We apply the FCS-CPA method to investigate phonon transport properties of graphene systems in the presence of disorders. For binary disorders as well as Anderson disorders, we calculate up to the 8-th phonon transmission moments and demonstrate that the numerical results of the FCS-CPA method agree very well with that of the brute force method. The benchmark shows that the FCS-CPA method achieves 20 times more speedup ratio. Collective features of phonon current cumulants are also revealed.

Keywords phonon transport      disordered systems      coherent potential approximation      full counting statistics     
Corresponding Author(s): Fuming Xu,Jian Wang   
Issue Date: 25 November 2020
 Cite this article:   
Chao Zhang,Fuming Xu,Jian Wang. Full counting statistics of phonon transport in disordered systems[J]. Front. Phys. , 2021, 16(3): 33502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1027-8
https://academic.hep.com.cn/fop/EN/Y2021/V16/I3/33502
1 Z. Liu, X. Yu, and K. Chen, Thermal transport associated with ballistic phonons in asymmetric quantum structures, Front. Phys. China 4(3), 420 (2009)
https://doi.org/10.1007/s11467-009-0056-0
2 R. Su, Z. Yuan, J. Wang, and Z. G. Zheng, Interfacefacilitated energy transport in coupled Frenkel–Kontorova chains, Front. Phys. 11(2), 114401 (2016)
https://doi.org/10.1007/s11467-015-0548-z
3 T. Yamamoto, S. Watanabe, and K. Watanabe, Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92(7), 075502 (2004)
https://doi.org/10.1103/PhysRevLett.92.075502
4 C. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Breakdown of Fourier’s law in nanotube thermal conductors, Phys. Rev. Lett. 101(7), 075903 (2008)
https://doi.org/10.1103/PhysRevLett.101.075903
5 X. Chen, Y. Xu, J. Wang, and H. Guo, Valley filtering effect of phonons in graphene with a grain boundary, Phys. Rev. B 99(6), 064302 (2019)
https://doi.org/10.1103/PhysRevB.99.064302
6 P. Wang, L. Lu, and K. Bertoldi, Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett. 115(10), 104302 (2015)
https://doi.org/10.1103/PhysRevLett.115.104302
7 S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topologically protected elastic waves in phononic metamaterials, Nat. Commun. 6(1), 8682 (2015)
https://doi.org/10.1038/ncomms9682
8 R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator,Science 349(6243), 47 (2015)
https://doi.org/10.1126/science.aab0239
9 Z. Y. Ong and C. H. Lee, Transport and localization in a topological phononic lattice with correlated disorder, Phys. Rev. B 94(13), 134203 (2016)
https://doi.org/10.1103/PhysRevB.94.134203
10 H. B. Zhou, G. Zhang, J. S. Wang, and Y. W. Zhang, Phonon transport in a one-dimensional harmonic chain with long-range interaction and mass disorder, Phys. Rev. E 94(5), 052123 (2016)
https://doi.org/10.1103/PhysRevE.94.052123
11 Y. Q. Ke, K. Xia, and H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Phys. Rev. Lett. 100(16), 166805 (2008)
https://doi.org/10.1103/PhysRevLett.100.166805
12 Y. Q. Ke, K. Xia, and H. Guo, Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions, Phys. Rev. Lett. 105(23), 236801 (2010)
https://doi.org/10.1103/PhysRevLett.105.236801
13 P. Soven, Coherent-potential model of substitutional disordered alloys,Phys. Rev. 156(3), 809 (1967)
https://doi.org/10.1103/PhysRev.156.809
14 D. W. Taylor, Vibrational properties of imperfect crystals with large defect concentrations, Phys. Rev. 156(3), 1017 (1967)
https://doi.org/10.1103/PhysRev.156.1017
15 X. X. Ni, M. L. Leek, J. S. Wang, Y. P. Feng, and B. W. Li, Anomalous thermal transport in disordered harmonic chains and carbon nanotubes, Phys. Rev. B 83(4), 045408 (2011)
https://doi.org/10.1103/PhysRevB.83.045408
16 J. X. Zhai, Q. Y. Zhang, Z. H. Cheng, J. Ren, Y. Q. Ke, and B. W. Li, Anomalous transparency induced by cooperative disorders in phonon transport, Phys. Rev. B 99(19), 195429 (2019)
https://doi.org/10.1103/PhysRevB.99.195429
17 Z. H. Cheng, J. X. Zhai, Q. Y. Zhang, and Y. Q. Ke, Auxiliary coherent medium theory for lattice vibrations in random binary alloys with mass and force-constant disorders, Phys. Rev. B 99(13), 134202 (2019)
https://doi.org/10.1103/PhysRevB.99.134202
18 W. R. Mondal, T. Berlijn, M. Jarrell, and N. S. Vidhyadhiraja, Phonon localization in binary alloys with diagonal and off-diagonal disorder: A cluster Green’s function approach, Phys. Rev. B 99(13), 134203 (2019)
https://doi.org/10.1103/PhysRevB.99.134203
19 B. Fu, L. Zhang, Y. Wei, and J. Wang, Full counting statistics of conductance for disordered systems, Phys. Rev. B 96(11), 115410 (2017)
https://doi.org/10.1103/PhysRevB.96.115410
20 J. A. Young and J. U. Koppel, Phonon spectrum of graphite, J. Chem. Phys. 42(1), 357 (1965)
https://doi.org/10.1063/1.1695699
21 R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209(1–2), 77 (1993)
https://doi.org/10.1016/0009-2614(93)87205-H
22 L. G. C. Rego and G. Kirczenow, Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett. 81(1), 232 (1998)
https://doi.org/10.1103/PhysRevLett.81.232
23 M. P. Blencowe, Quantum energy flow in mesoscopic dielectric structures, Phys. Rev. B 59(7), 4992 (1999)
https://doi.org/10.1103/PhysRevB.59.4992
24 J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
25 X. Chen, Y. Liu, and W. Duan, Thermal engineering in low-dimensional quantum devices: A tutorial review of nonequilibrium Green’s function methods, Small Methods 2(6), 1700343 (2018)
https://doi.org/10.1002/smtd.201700343
26 M. P. Lopez Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and J Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F: Met. Phys. 15, 851 (1985)
https://doi.org/10.1088/0305-4608/15/4/009
27 Z. Yu, G. M. Tang, and J. Wang, Full-counting statistics of transient energy current in mesoscopic systems, Phys. Rev. B 93(19), 195419 (2016)
https://doi.org/10.1103/PhysRevB.93.195419
28 G. M. Tang, Z. Yu, and J. Wang, Full-counting statistics of energy transport of molecular junctions in the polaronic regime, New J. Phys. 19(8), 083007 (2017)
https://doi.org/10.1088/1367-2630/aa79eb
29 G. M. Tang and J. Wang, Full-counting statistics of charge and spin transport in the transient regime: A nonequilibrium Green’s function approach, Phys. Rev. B 90(19), 195422 (2014)
https://doi.org/10.1103/PhysRevB.90.195422
30 G. M. Tang, Y. Xing, and J. Wang, Short-time dynamics of molecular junctions after projective measurement, Phys. Rev. B 96(7), 075417 (2017)
https://doi.org/10.1103/PhysRevB.96.075417
31 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
32 L. Zhang, B. Fu, B. Wang, Y. Wei, and J. Wang, Frequency-dependent transport properties in disordered systems: A generalized coherent potential approximation approach, Phys. Rev. B 99(15), 155406 (2019)
https://doi.org/10.1103/PhysRevB.99.155406
[1] Changqing Xiang, Cheng-Wei Wu, Wu-Xing Zhou, Guofeng Xie, Gang Zhang. Thermal transport in lithium-ion battery: A micro perspective for thermal management[J]. Front. Phys. , 2022, 17(1): 13202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed