|
|
Thermal transport in lithium-ion battery: A micro perspective for thermal management |
Changqing Xiang1, Cheng-Wei Wu2, Wu-Xing Zhou2( ), Guofeng Xie2( ), Gang Zhang3( ) |
1. College of Information Science and Engineering, Jishou University, Jishou 416000, China 2. 2School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China 3. Institute of High Performance Computing A*STAR, Singapore 138632, Singapore |
|
|
Abstract In recent years, lithium ion (Li-ion) batteries have served as significant power sources in portable electronic devices and electric vehicles because of their high energy density and rate capability. There are growing concerns towards the safety of Li-ion batteries, in which thermal conductivities of anodes, cathodes, electrolytes and separator play key roles for determining the thermal energy transport in Li-ion battery. In this review, we summarize the state-of-the-art studies on the thermal conductivities of commonly used anodes, cathodes, electrolytes and separator in Li-ion batteries, including both theoretical and experimental reports. First, the thermal conductivities of anodes and cathodes are discussed, and the effects of delithiation degree and temperature of materials are also discussed. Then, we review the thermal conductivities of commonly used electrolytes, especially on solid electrolytes. Finally, the basic concept of interfacial thermal conductance and simulation methods are presented, as well as the interfacial thermal conductance between separator and cathodes. This perspective review would provide atomic perspective knowledge to understand thermal transport in Li-ion battery, which will be beneficial to the thermal management and temperature control in electrochemical energy storage devices.
|
Keywords
lithium ion batteries
thermal management
phonon transport
interfacial thermal transport
amorphous materials
|
Corresponding Author(s):
Wu-Xing Zhou,Guofeng Xie,Gang Zhang
|
Issue Date: 03 August 2021
|
|
1 |
M. Armand and J. M. Tarascon, Building better batteries, Nature 451(7179), 652 (2008)
https://doi.org/10.1038/451652a
|
2 |
V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Liion batteries: A review, Energy Environ. Sci. 4(9), 3243 (2011)
https://doi.org/10.1039/c1ee01598b
|
3 |
J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167 (2013)
https://doi.org/10.1021/ja3091438
|
4 |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(6861), 359 (2001)
https://doi.org/10.1038/35104644
|
5 |
K. Shah, V. Vishwakarma, and A. Jain, Measurement of multiscale thermal transport phenomena in Li-ion cells: A review, J. Electrochem. En. Conv. Stor. 13(3), 030801 (2016)
https://doi.org/10.1115/1.4034413
|
6 |
T. M. Bandhauer, S. Garimella, and T. F. Fuller, A critical review of thermal issues in lithium-ion batteries, J. Electrochem. Soc. 158(3), R1 (2011)
https://doi.org/10.1149/1.3515880
|
7 |
V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, Modeling and simulation of lithium-ion batteries from a systems engineering perspective, J. Electrochem. Soc. 159(3), R31 (2012)
https://doi.org/10.1149/2.018203jes
|
8 |
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248, 37 (2014)
https://doi.org/10.1016/j.jpowsour.2013.08.135
|
9 |
L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, and J. O. Thomas, Influence of carbon black and binder on Li-ion batteries, J. Power Sources 101(1), 1 (2001)
https://doi.org/10.1016/S0378-7753(01)00481-5
|
10 |
H. Maleki, J. R. Selman, R. B. Dinwiddie, and H. Wang, High thermal conductivity negative electrode material for lithium-ion batteries, J. Power Sources 94(1), 26 (2001)
https://doi.org/10.1016/S0378-7753(00)00661-3
|
11 |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
https://doi.org/10.1038/nmat3064
|
12 |
D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett. 12(6), 3238 (2012)
https://doi.org/10.1021/nl301230g
|
13 |
D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter 24(23), 233203 (2012)
https://doi.org/10.1088/0953-8984/24/23/233203
|
14 |
K. M. F. Shahil and A. A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials, Solid State Commun. 152(15), 1331 (2012)
https://doi.org/10.1016/j.ssc.2012.04.034
|
15 |
S. Berber, Y. K. Kwon, and D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)
https://doi.org/10.1103/PhysRevLett.84.4613
|
16 |
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87(21), 215502 (2001)
https://doi.org/10.1103/PhysRevLett.87.215502
|
17 |
B. Koo, P. Goli, A. V. Sumant, P. C. dos Santos Claro, T. Rajh, C. S. Johnson, A. A. Balandin, and E. V. Shevchenko, Toward lithium ion batteries with enhanced thermal conductivity, ACS Nano 8(7), 7202 (2014)
https://doi.org/10.1021/nn502212b
|
18 |
E. Lee, R. A. Salgado, B. Lee, A. V. Sumant, T. Rajh, C. Johnson, A. A. Balandin, and E. V. Shevchenko, Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles, Carbon 129, 702 (2018)
https://doi.org/10.1016/j.carbon.2017.12.061
|
19 |
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248, 37 (2014)
https://doi.org/10.1016/j.jpowsour.2013.08.135
|
20 |
J. L. He, L. Zhang, and L. Liu, Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide, Phys. Chem. Chem. Phys. 21(23), 12192 (2019)
https://doi.org/10.1039/C9CP01585J
|
21 |
N. Mattila and A. J. Karttunen, Lattice thermal conductivity of NaCoO2 and LiCoO2 intercalation materials studied by hybrid density functional theory, Mater. Res. Express 7(7), 075502 (2020)
https://doi.org/10.1088/2053-1591/aba3e5
|
22 |
H. Yang, C. N. Savory, B. J. Morgan, D. O. Scanlon, J. M. Skelton, and A. Walsh, Chemical trends in the lattice thermal conductivity of Li(Ni, Mn, Co)O2 (NMC) battery cathodes, Chem. Mater. 32(17), 7542 (2020)
https://doi.org/10.1021/acs.chemmater.0c02908
|
23 |
T. L. Feng, A. O′ Hara, and S. T. Pantelides, Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials, Nano Energy 75, 104916 (2020)
https://doi.org/10.1016/j.nanoen.2020.104916
|
24 |
J. Cho, M. D. Losego, H. G. Zhang, H. Kim, J. M. Zuo, I. Petrov, D. G. Cahill, and P. V. Braun, Electrochemically tunable thermal conductivity of lithium cobalt oxide, Nat. Commun. 5(1), 4035 (2014)
https://doi.org/10.1038/ncomms5035
|
25 |
X. Qian, X. Gu, M. S. Dresselhaus, and R. G. Yang, Anisotropic tuning of graphite thermal conductivity by lithium intercalation, J. Phys. Chem. Lett. 7(22), 4744 (2016)
https://doi.org/10.1021/acs.jpclett.6b02295
|
26 |
H. Li, X. Huang, L. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, Y. J. Mo, and N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature, Solid State Ion. 135(1–4), 181 (2000)
https://doi.org/10.1016/S0167-2738(00)00362-3
|
27 |
P. Limthongkul, Y. I. Jang, N. J. Dudney, and Y. M. Chi-ang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater. 51(4), 1103 (2003)
https://doi.org/10.1016/S1359-6454(02)00514-1
|
28 |
T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc. 151(6), A838 (2004)
https://doi.org/10.1149/1.1739217
|
29 |
S. Q. Hu, Z. W. Zhang, Z. T. Wang, K. Y. Zeng, Y. Cheng, J. Chen, and G. Zhang, Significant reduction in thermal conductivity of lithium cobalt oxide cathode upon charging: Propagating and non-propagating thermal energy transport, ES Energy Environ. 1, 74 (2018)
|
30 |
G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, 2005
|
31 |
R. E. Peierls and R. H. Dalitz, Selected Scientific Papers of Sir Rudolf Peierls: With Commentary, World Scientific 15, 1997
https://doi.org/10.1142/9789812795779_0004
|
32 |
R. E. Peierls, Quantum Theory of Solids, Oxford University Press, London, England, 1955, p. 108
|
33 |
P. G. Klemens and F. E. Simon, The thermal conductivity of dielectric solids at low temperatures (Theoretical), Proc. R. Soc. Lond. A 208(1092), 108 (1951)
https://doi.org/10.1098/rspa.1951.0147
|
34 |
J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113(4), 1046 (1959)
https://doi.org/10.1103/PhysRev.113.1046
|
35 |
A. Einstein, über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes, Ann. Phys. 340(10), 898 (1911)
https://doi.org/10.1002/andp.19113401005
|
36 |
D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46(10), 6131 (1992)
https://doi.org/10.1103/PhysRevB.46.6131
|
37 |
P. B. Allen and J. L. Feldman, Thermal conductivity of disordered harmonic solids, Phys. Rev. B 48(17), 12581 (1993)
https://doi.org/10.1103/PhysRevB.48.12581
|
38 |
M. T. Agne, R. Hanus, and G. J. Snyder, Minimum thermal conductivity in the context of diffuson-mediated thermal transport, Energy Environ. Sci. 11(3), 609 (2018)
https://doi.org/10.1039/C7EE03256K
|
39 |
A. Abdullaev, A. Mukanova, T. Yakupov, A. Mentbayeva, Z. Bakenov, and Z. Utegulov, Nanoscale thermal transport and elastic properties of lithiated amorphous Si thin films, Mater. Today Proc. 25, 88 (2020)
https://doi.org/10.1016/j.matpr.2019.11.333
|
40 |
J. He, L. Zhang, and L. Liu, Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide, Phys. Chem. Chem. Phys. 21(23), 12192 (2019)
https://doi.org/10.1039/C9CP01585J
|
41 |
V. Vishwakarma, C. Waghela, Z. Wei, R. Prasher, S. C. Nagpure, J. L. Li, F. Q. Liu, C. Daniel, and A. Jain, Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport, J. Power Sources 300, 123 (2015)
https://doi.org/10.1016/j.jpowsour.2015.09.028
|
42 |
Y. Yang, X. P. Huang, Z. Y. Cao, and G. Chen, Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries, Nano Energy 22, 301 (2016)
https://doi.org/10.1016/j.nanoen.2016.01.026
|
43 |
S. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, F. H. Richter, and J. Janek, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy 52(3), 259 (2020)
https://doi.org/10.1038/s41560-020-0565-1
|
44 |
P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ion. 180(14–16), 911 (2009)
https://doi.org/10.1016/j.ssi.2009.03.022
|
45 |
K. Takada, Progress and prospective of solid-state lithium batteries, Acta Mater. 61(3), 759 (2013)
https://doi.org/10.1016/j.actamat.2012.10.034
|
46 |
C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy 33, 363 (2017)
https://doi.org/10.1016/j.nanoen.2017.01.028
|
47 |
C. W. Sun, J. Liu, Y. D. Gong, D. P. Wilkinson, and J. J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy 159, 363 (2017)
https://doi.org/10.1016/j.nanoen.2017.01.028
|
48 |
V. Vishwakarma and A. Jain, Enhancement of thermal transport in gel polymer electrolytes with embedded BN/Al2O3 nano- and micro-particles, J. Power Sources 362, 219 (2017)
https://doi.org/10.1016/j.jpowsour.2017.07.035
|
49 |
H. Meng, X. X. Yu, H. Feng, Z. G. Xue, and N. Yang, Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: A molecular dynamics study, Int. J. Heat Mass Transf. 137, 1241 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.021
|
50 |
D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Ma-han, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Nanoscale thermal transport (II): 2003–2012, Appl. Phys. Rev. 1(1), 011305 (2014)
https://doi.org/10.1063/1.4832615
|
51 |
W. A. Little, The transport of heat between dissimilar solids at low temperatures, Can. J. Phys. 37(3), 334 (1959)
https://doi.org/10.1139/p59-037
|
52 |
E. T. Swartz and R. O. Pohl, Thermal resistance at interfaces, Appl. Phys. Lett. 51(26), 2200 (1987)
https://doi.org/10.1063/1.98939
|
53 |
R. M. Costescu, M. A. Wall, and D. G. Cahill, Thermal conductance of epitaxial interfaces, Phys. Rev. B 67(5), 054302 (2003)
https://doi.org/10.1103/PhysRevB.67.054302
|
54 |
E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61(3), 605 (1989)
https://doi.org/10.1103/RevModPhys.61.605
|
55 |
P. E. Hopkins, Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance, ISRN Mech. Eng. 2013, 682586 (2013)
https://doi.org/10.1155/2013/682586
|
56 |
N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B 68(24), 245406 (2003)
https://doi.org/10.1103/PhysRevB.68.245406
|
57 |
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
|
58 |
Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B 86(23), 235304 (2012)
https://doi.org/10.1103/PhysRevB.86.235304
|
59 |
W. Zhang, T. S. Fisher, and N. Mingo, Simulation of interfacial phonon transport in Si–Ge heterostructures using an atomistic Green’s function method, J. Heat Transfer 129(4), 483 (2007)
https://doi.org/10.1115/1.2709656
|
60 |
Y. Q. Cai, J. Lan, G. Zhang, and Y. W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2, Phys. Rev. B 89(3), 035438 (2014)
https://doi.org/10.1103/PhysRevB.89.035438
|
61 |
Z. Y. Ong, Y. Cai, G. Zhang, and Y. W. Zhang, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene, J. Phys. Chem. C 118(43), 25272 (2014)
https://doi.org/10.1021/jp5079357
|
62 |
Y. Y. Zhang, D. K. Ma, Y. Zang, X. J. Wang, and N. Yang, A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance, Front. Energy Res. 6, 48 (2018)
https://doi.org/10.3389/fenrg.2018.00048
|
63 |
W. Lv and A. Henry, Direct calculation of modal contributions to thermal conductivity via Green–Kubo modal analysis, New J. Phys. 18(1), 013028 (2016)
https://doi.org/10.1088/1367-2630/18/1/013028
|
64 |
T. L. Feng, W. J. Yao, Z. Y. Wang, J. J. Shi, C. Li, B. Y. Cao, and X. L. Ruan, Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces, Phys. Rev. B 95(19), 195202 (2017)
https://doi.org/10.1103/PhysRevB.95.195202
|
65 |
D. Ma, A. Arora, S. Deng, G. Xie, J. Shiomi, and N. Yang, Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction, Materials Today Physics 8, 56 (2019)
https://doi.org/10.1016/j.mtphys.2019.01.002
|
66 |
A. Giri and P. E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces, Adv. Funct. Mater. 30(8), 1903857 (2020)
https://doi.org/10.1002/adfm.201903857
|
67 |
A. Dhakane, V. Varshney, J. Liu, H. Heinz, and A. Jain, Molecular dynamics simulations of separator-cathode interfacial thermal transport in a Li-ion cell, Surf. Interfaces 21, 100674 (2020)
https://doi.org/10.1016/j.surfin.2020.100674
|
68 |
W. X. Zhou, Y. Cheng, K. Q. Chen, G. F. Xie, T. Wang, and G. Zhang, Thermal conductivity of amorphous materials, Adv. Funct. Mater. 30(8), 1903829 (2020)
https://doi.org/10.1002/adfm.201903829
|
69 |
J. N. Reimers and J. R. Dahn, Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2, J. Electrochem. Soc. 139(8), 2091 (1992)
https://doi.org/10.1149/1.2221184
|
70 |
M. Malik, M. Mathew, I. Dincer, M. A. Rosen, J. McGrory, and M. Fowler, Experimental investigation and thermal modelling of a series connected LiFePO4 battery pack, Int. J. Therm. Sci. 132, 466 (2018)
https://doi.org/10.1016/j.ijthermalsci.2018.06.025
|
71 |
M. Xu, Z. Zhang, X. Wang, L. Jia, and L. Yang, A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process, Energy 80, 303 (2015)
https://doi.org/10.1016/j.energy.2014.11.073
|
72 |
L. C. Wei, Z. Lu, F. Cao, L. Y. Zhang, X. Yang, X. L. Yu, and L. W. Jin, A comprehensive study on thermal conductivity of the lithium‐ion battery, Int. J. Energy Res. 44(12), 9466 (2020)
https://doi.org/10.1002/er.5016
|
73 |
J. L. He, L. Zhang, and L. Liu, Improving thermal conduction across cathode/electrolyte interfaces in solidstate lithium-ion batteries by hierarchical hydrogenbond network, Mater. Des. 194, 108927 (2020)
https://doi.org/10.1016/j.matdes.2020.108927
|
74 |
X. S. Li, F. He, and L. Ma, Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation, J. Power Sources 238, 395 (2013)
https://doi.org/10.1016/j.jpowsour.2013.04.073
|
75 |
L. W. Fan, J. M. Khodadadi, and A. A. Pesaran, A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles, J. Power Sources 238, 301 (2013)
https://doi.org/10.1016/j.jpowsour.2013.03.050
|
76 |
B. Zhao, L. Jiang, X. L. Zeng, K. Zhang, M. M. F. Yuen, J. B. Xu, X. Z. Fu, R. Sun, and C. P. Wong, A highly thermally conductive electrode for lithium ion batteries, J. Mater. Chem. A 4(38), 14595 (2016)
https://doi.org/10.1039/C6TA04774B
|
77 |
U. S. Kim, C. B. Shin, and C. S. Kim, Modeling for the scale-up of a lithium-ion polymer battery, J. Power Sources 189(1), 841 (2009)
https://doi.org/10.1016/j.jpowsour.2008.10.019
|
78 |
Y. Wang, Z. X. Lu, A. K. Roy, and X. L. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electronphonon coupling perspective, J. Appl. Phys. 119(6), 065103 (2016)
https://doi.org/10.1063/1.4941347
|
79 |
L. F. Zhang, J. T. Lü, J. S. Wang, and B. W. Li, Thermal transport across metal–insulator interface via electron– phonon interaction, J. Phys.: Condens. Matter 25(44), 445801 (2013)
https://doi.org/10.1088/0953-8984/25/44/445801
|
80 |
J. Lombard, F. Detcheverry, and S. Merabia, Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces, J. Phys.: Condens. Matter 27(1), 015007 (2015)
https://doi.org/10.1088/0953-8984/27/1/015007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|