Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13503    https://doi.org/10.1007/s11467-020-0999-8
RESEARCH ARTICLE
Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction
Qinye Li1,2, Siyao Qiu3(), Baohua Jia1,2()
1. Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
2. The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
3. College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
 Download: PDF(1172 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Water electrolysis is to split water into hydrogen and oxygen using electricity as the driving force. To obtain low-cost hydrogen in a large scale, it is critical to develop electrocatalysts based on earth abundant elements with a high efficiency. This computational work started with Cobalt on CoTa2O6 surface as the active site, CoTa2O6/Graphene heterojunctions have been explored as potential oxygen evolution reaction (OER) catalysts through density functional theory (DFT). We demonstrated that the electron transfer (δ) from CoTa2O6 to graphene substrate can be utilized to boost the reactivity of Co-site, leading to an OER overpotential as low as 0.30 V when N-doped graphene is employed. Our findings offer novel design of heterojunctions as high performance OER catalysts.

Keywords CoTa2O6      OER      charge transfer      DFT      heterojunctions     
Corresponding Author(s): Siyao Qiu,Baohua Jia   
Just Accepted Date: 27 September 2020   Issue Date: 19 October 2020
 Cite this article:   
Qinye Li,Siyao Qiu,Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0999-8
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13503
1 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)
https://doi.org/10.1021/cr1002326
2 H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis, Chem-CatChem 2(7), 724 (2010)
https://doi.org/10.1002/cctc.201000126
3 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355(6321), eaad4998 (2017)
https://doi.org/10.1126/science.aad4998
4 T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal. 2(8), 1765 (2012)
https://doi.org/10.1021/cs3003098
5 X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, and W. Hu, Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution, Adv. Mater. 31(49), 1905622 (2019)
https://doi.org/10.1002/adma.201905622
6 S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, and Z. J. Xu, Shifting oxygen charge towards octahedral metal: A way to promote water oxidation on cobalt spinel oxides, Angew. Chem. Int. Ed. 58(18), 6042 (2019)
https://doi.org/10.1002/anie.201902114
7 Y. Duan, Z. Y. Yu, S. J. Hu, X. S. Zheng, C. T. Zhang, H. H. Ding, B. C. Hu, Q. Q. Fu, Z. L. Yu, X. Zheng, J. F. Zhu, M. R. Gao, and S. H. Yu, Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis, Angew. Chem. Int. Ed. 58(44), 15772 (2019)
https://doi.org/10.1002/anie.201909939
8 Y. Shao, X. Xiao, Y. P. Zhu, and T. Y. Ma, Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes, Angew. Chem. Int. Ed. 58(41), 14599 (2019)
https://doi.org/10.1002/anie.201909326
9 R. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, and B. Liu, Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction, Adv. Mater. 31(41), 1903909 (2019)
https://doi.org/10.1002/adma.201903909
10 Y. Zhang, Y. Guo, T. Liu, F. Feng, C. Wang, H. Hu, M. Wu, M. Ni, and Z. Shao, The synergistic effect accelerates the oxygen reduction/evolution reaction in a Zn-Air battery, Front. Chem. 7, 524 (2019)
https://doi.org/10.3389/fchem.2019.00524
11 Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev. 44(8), 2060 (2015)
https://doi.org/10.1039/C4CS00470A
12 Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, and S. Z. Qiao, Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction, J. Am. Chem. Soc. 133(50), 20116 (2011)
https://doi.org/10.1021/ja209206c
13 Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and S. Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun. 5(1), 3783 (2014)
https://doi.org/10.1038/ncomms4783
14 C. Meng, M. Lin, X. Sun, X. Chen, X. Chen, X. Du, and Y. Zhou, Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution, Chem. Commun. 55(20), 2904 (2019)
https://doi.org/10.1039/C8CC08951E
15 Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng, X. Han, and W. Hu, Spontaneous synthesis of silver-nanoparticledecorated transition-metal hydroxides for enhanced oxygen evolution reaction, Angew. Chem. Int. Ed. 59(18), 7245 (2020)
https://doi.org/10.1002/anie.202001703
16 Y. Xu, F. Zhang, T. Sheng, T. Ye, D. Yi, Y. Yang, S. Liu, X. Wang, and J. Yao, Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction, J. Mater. Chem. A 7(40), 23191 (2019)
https://doi.org/10.1039/C9TA08379K
17 R. Wei, X. Bu, W. Gao, R A B. Villaos, G. Macam, Z. Q. Huang, C. Lan, F. C. Chuang, Y. Qu, and J. C. Ho, Engineering surface structure of spinel oxides via high-valent vanadium doping for remarkably enhanced electrocatalytic oxygen evolution reaction, ACS Appl. Mater. Interfaces 11(36), 33012 (2019)
https://doi.org/10.1021/acsami.9b10868
18 W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang, B. Li, C. Zhu, L. You, M. R. Gao, Z. Liu, S. H. Yu, and K. Zhou, Embedding ultrafine metal oxide nanoparticles in monolayered metal–organic framework nanosheets enables efficient electrocatalytic oxygen evolution, ACS Nano 14(2), 1971 (2020)
https://doi.org/10.1021/acsnano.9b08458
19 L. Wen, X. Zhang, J. Liu, X. Li, C. Xing, X. Lyu, W. Cai, W. Wang, and Y. Li, Cr-dopant induced breaking of scaling relations in CoFe layered double hydroxides for improvement of oxygen evolution reaction, Small 15(35), 1902373 (2019)
https://doi.org/10.1002/smll.201902373
20 L. J. Enman, A. E. Vise, M. Burke Stevens, and S. W. Boettcher, Effects of metal electrode support on the catalytic activity of Fe(oxy)hydroxide for the oxygen evolution reaction in alkaline media, ChemPhysChem 20(22), 3089 (2019)
https://doi.org/10.1002/cphc.201900511
21 F. Bizzotto, H. Ouhbi, Y. Fu, G. K. H. Wiberg, U. Aschauer, and M. Arenz, Examining the structure sensitivity of the oxygen evolution reaction on Pt single-crystal electrodes: A combined experimental and theoretical study, ChemPhysChem 20(22), 3154 (2019)
https://doi.org/10.1002/cphc.201900193
22 S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Müller, U. Starke, K. Reuter, and B. V. Lotsch, Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium, Adv. Energy Mater. 9(15), 1803795 (2019)
https://doi.org/10.1002/aenm.201803795
23 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie- Cryst. Mater. 220(5–6), 567 (2005)
https://doi.org/10.1524/zkri.220.5.567.65075
24 E. R. McNellis, J. Meyer, and K. Reuter, Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions, Phys. Rev. B 80(20), 205414 (2009)
https://doi.org/10.1103/PhysRevB.80.205414
25 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
https://doi.org/10.1103/PhysRevB.46.6671
26 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
27 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys Rev B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
28 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate abinitioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
https://doi.org/10.1063/1.3382344
29 V. D. Mello, L. I. Zawislak, J. B. Marimon da Cunha, E. J. Kinast, J. B. Soares, and C. A. dos Santos, Structure and magnetic properties of layered (FexCo1−x)Ta2O6 compounds, J. Magn. Magn. Mater. 196–197, 846 (1999)
https://doi.org/10.1016/S0304-8853(98)00969-X
30 I. S. Mulla, N. Natarajan, A. B. Gaikwad, V. Samuel, U. N. Guptha, and V. Ravi, A coprecipitation technique to prepare CoTa2O6 and CoNb2O6, Mater. Lett. 61(11–12), 2127 (2007)
https://doi.org/10.1016/j.matlet.2006.08.024
31 J. N. Reimers, J. E. Greedan, C. V. Stager, and R. Kremer, Crystal structure and magnetism in CoSb2O6 and CoTa2O6, J. Solid State Chem. 83(1), 20 (1989)
https://doi.org/10.1016/0022-4596(89)90049-2
32 R. K. Kremer, J. E. Greedan, E. Gmelin, W. Dai, M. A. White, S. M. Eicher, and K. J. Lushington, Specific heat of MTa2O6 (M= Co, Ni, Fe, Mg) evidence for low dimensional magnetism, J. Phys. Colloques 49(C8), C8-1495 (1988)
https://doi.org/10.1051/jphyscol:19888688
33 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108(46), 17886 (2004)
https://doi.org/10.1021/jp047349j
34 X. Cui, P. Ren, D. Deng, J. Deng, and X. Bao, Single layer graphene encapsulating non-precious metals as highperformance electrocatalysts for water oxidation, Energy Environ. Sci. 9(1), 123 (2016)
https://doi.org/10.1039/C5EE03316K
35 T. Zhang, J. Du, P. Xi, and C. Xu, Hybrids of cobalt/iron phosphides derived from bimetal–organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction, ACS Appl. Mater. Interfaces 9(1), 362 (2017)
https://doi.org/10.1021/acsami.6b12189
36 M. Asnavandi, Y. Yin, Y. Li, C. Sun, and C. Zhao, Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts, ACS Energy Lett. 3(7), 1515 (2018)
https://doi.org/10.1021/acsenergylett.8b00696
37 W. Zhou, D. D. Huang, Y. P. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. Sun, P. Feng, and X. Bu, Stable hierarchical bimetal–organic nanostructures as high perfor mance electrocatalysts for the oxygen evolution reaction, Angew. Chem. Int. Ed. 58(13), 4227 (2019)
https://doi.org/10.1002/anie.201813634
38 Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(4), 1790 (2010)
https://doi.org/10.1021/nn100315s
39 Z. Wang, Z. X. Low, X. Zeng, B. Su, Y. Yin, C. Sun, T. Williams, H. Wang, and X. Zhang, Verticallyheterostructured TiO2–Ag-rGO ternary nanocomposite constructed with 001 facetted TiO2 nanosheets for enhanced Pt-free hydrogen production, Int. J. Hydrogen Energy 43(3), 1508 (2018)
https://doi.org/10.1016/j.ijhydene.2017.11.053
40 T. Liao, Z. Sun, C. Sun, S. X. Dou, and D. J. Searles, Electronic coupling and catalytic effect on H2 evolution of MoS2/graphene nanocatalyst, Sci. Rep. 4(1), 6256 (2015)
https://doi.org/10.1038/srep06256
41 B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, and R. Wu, Anion-cation Co-substitution activation of spinel Co- MoO4 for efficient oxygen evolution reaction, Chem. Eng. J. 394, 124926 (2020)
https://doi.org/10.1016/j.cej.2020.124926
42 M. Hu, S. Li, S. Zheng, X. Liang, J. Zheng, and F. Pan, Tuning single-atom catalysts of nitrogen-coordinated transition metals for optimizing oxygen evolution and reduction reactions, J. Phys. Chem. C 124(24), 13168 (2020)
https://doi.org/10.1021/acs.jpcc.0c01998
43 J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
44 J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of twodimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
45 Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
https://doi.org/10.1007/s11467-020-0980-6
[1] Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Front. Phys. , 2021, 16(4): 43300-.
[2] Lin Ju, Mei Bie, Xiwei Zhang, Xiangming Chen, Liangzhi Kou. Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses[J]. Front. Phys. , 2021, 16(1): 13201-.
[3] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[4] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[5] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[6] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
[7] Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure[J]. Front. Phys. , 2018, 13(4): 138115-.
[8] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[9] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[10] Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation[J]. Front. Phys. , 2018, 13(2): 137302-.
[11] Jian-Wei Li,Bin Wang,Yun-Jin Yu,Ya-Dong Wei,Zhi-Zhou Yu,Yin Wang. Spin-resolved quantum transport in graphene-based nanojunctions[J]. Front. Phys. , 2017, 12(4): 126501-.
[12] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[13] Zhun Lu. Spin physics through unpolarized processes[J]. Front. Phys. , 2016, 11(1): 111204-.
[14] Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures[J]. Front. Phys. , 2015, 10(1): 103101-.
[15] Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport[J]. Front. Phys. , 2014, 9(6): 698-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed